
DS for Formula

Development System Manual

©2001-2007 Datalogic Mobile S.r.l. 822000131 (Rev. A) 08/07

www.mobile.datalogic.com

Datalogic Mobile S.r.l.
Via S. Vitalino, 13
40012 Lippo di Calderara di Reno
Bologna - Italy
Telephone: (+39) 051-3147011
Fax: (+39) 051-3147561

World wide Sales Network
available from: www.mobile.datalogic.com/contacts

Volume 2

Datalogic Mobile S.r.l.
Via S. Vitalino 13
40012 - Lippo di Calderara di Reno
Bologna - Italy

DS for Formula - Development System Manual

Volume 2

Software Version: 1.3 and later

Ed.: 08/2007

ALL RIGHTS RESERVED
Datalogic reserves the right to make modifications and improvements without prior notification.

Datalogic shall not be liable for technical or editorial errors or omissions contained herein, nor for incidental or
consequential damages resulting from the use of this material.

Product names mentioned herein are for identification purposes only and may be trademarks and or
registered trademarks of their respective companies.

© Datalogic S.p.A. 2001 - 2007

DATALOGIC S.p.A. Software License Agreement

This legal document is an agreement between you, the end user and DATALOGIC S.p.A. BY INSTALLING
THE SOFTWARE, YOU ARE AGREEING TO BECOME BOUND BY THE TERMS OF THIS AGREEMENT,
which includes the SOFTWARE LICENSE, LIMITED WARRANTY and ACKNOWLEDGMENT.

GRANT OF LICENSE. DATALOGIC grants to you the right to use one copy of the enclosed DATALOGIC
S.p.A., program (the "SOFTWARE") on a single terminal connected to a single computer (i.e.; with a single
CPU). You may not network the SOFTWARE or otherwise use it on more than one computer or computer
terminal at the same time.

COPYRIGHT. The SOFTWARE is owned by DATALOGIC S.p.A. or its suppliers and is protected by copyright
laws and international treaty provisions. Therefore, you must treat the SOFTWARE like any other copyrighted
material (i.e.; a book or musical recording) except that you may either (a) make one copy of the SOFTWARE
solely for backup or archival purposes, or (b) transfer the SOFTWARE to a single hard disk provided you
keep the original solely for backup or archival purposes. You may not copy the written materials
accompanying the software.

NON PERMITTED USES: Without the express permission of DATALOGIC S.p.A., you may not:
1. Use the software in a computer service business including rental, networking or time sharing software,

nor may you use it for multiple users, or multiple computer system applications in the absence of
individual network licenses with DATALOGIC S.p.A.

2. Use, Copy or modify, alter or transfer, electronically or otherwise, the software or documentation except
as expressly allowed in this agreement.

3. Translate, reverse engineer, de-assemble, de-compile or create derivative works based on the written
materials.

4. Sub-license or lease this program or its documentation.

LIMITED WARRANTY: This software and accompanying written materials are provided "as is" without
warranty of any kind. THE ENTIRE RISK AS TO THE RESULTS AND PERFORMANCE OF THIS
SOFTWARE IS ASSUMED BY YOU. SHOULD THE SOFTWARE PROVE DEFECTIVE IN USE, YOU (AND
NOT DATALOGIC OR ITS AGENTS) ASSUME THE ENTIRE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION OF DATA. FURTHER, DATALOGIC DOES NOT WARRANT, GUARANTEE OR
MAKE ANY REPRESENTATIONS REGARDING THE USE OF, OR THE RESULTS OF THE USE OF THE
SOFTWARE, IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, CURRENTNESS, OR
OTHERWISE AND YOU RELY ON THE SOFTWARE AND RESULTS AT YOUR OWN RISK.

DATALOGIC warrants to the original licensee that the CD-Rom on which the SOFTWARE is recorded is free
from defects in materials and workmanship under normal use and service for a period of ninety (90) days from
the date of delivery as evidenced by a copy of your receipt. DATALOGIC's entire liability and your exclusive
remedy shall be at DATALOGIC's option, replacement of the CD-Rom which shall be returned to
DATALOGIC with a copy of your receipt. If failure of the CD-Rom has resulted from accident, abuse or
misapplication of the product, then DATALOGIC shall have no responsibility to replace the product under this
warranty.

THE ABOVE IS THE ONLY WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE, THAT IS MADE BY DATALOGIC ON THIS DATALOGIC PRODUCT. IN NO
EVENT SHALL DATALOGIC OR ITS SUPPLIERS, NOR ANYONE ELSE WHO HAS BEEN INVOLVED IN
THE CREATION, PRODUCTION OR DELIVERY OF THIS PRODUCT, BE LIABLE FOR ANY DIRECT,
INDIRECT, CONSEQUENTIAL, OR INCIDENTAL DAMAGES WHATSOEVER (INCLUDING, WITHOUT
LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF
BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS) ARISING OUT OF THE USE, THE RESULTS
OF USE, OR INABILITY TO USE SUCH PRODUCT, EVEN IF DATALOGIC HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

ACKNOWLEDGMENT: You acknowledge that you have read this LICENSE and Limited Warranty,
understand them and agree to be bound by their terms and conditions. You also agree that the LICENSE and
Limited Warranty are the complete and exclusive statement between the parties and supersedes all other
communications between the parties relating to the subject matter of the LICENSE or the Limited Warranty.

ix

CONTENTS

Volume 1

1 GENERAL INFORMATION .. 1

2 INSTALLATION AND STRUCTURE .. 3

3 DEVELOPING USER APPLICATION PROGRAMS 15

4 TERMINAL RESOURCE MANEGEMENT ... 35

5 APPLICATION PROGRAM EXAMPLES ... 69

Volume 2

6 LIBRARY REFERENCE ... 83
6.1 Library Functions .. 83

backlight ... 88
bankset .. 89
battery_low... 92
beam .. 93
checkwakeup ... 94
clockiset ... 95
contrast .. 96
dec_habort ... 97
dec_hcnfg0... 98
dec_hreqst ... 100
dis_allsymblg.. 107
dlytsk.. 109
double_speed... 111
enhanced_terminal... 112
exit_to_bl.. 113
exit_to_rst... 114
fault .. 115
getcomerror.. 117
gotoxy .. 118
icon_battery.. 120
icon_bell ... 122
icon_mail .. 123
icon_null ... 124

x

icon_phone... 125
icon_time.. 126
icon_tx.. 128
ir_habort ... 129
ir_hreqst ... 131
ispechar ... 135
kb_habort ... 137
kb_hreqst ... 138
led .. 149
pen_portable .. 151
pen_shut_down.. 152
putchar ... 153
ram_config ... 155
rdtimc ... 156
rdtimst .. 157
rdytsk ... 159
readclock.. 161
reset_sys.. 163
ret_proc.. 164
retrig_psssd.. 165
rf_close .. 166
rf_habort... 167
rf_hreqst ... 168
rf_hretry.. 170
rf_init .. 172
rf_read.. 174
rf_stargate .. 175
rf_status ... 176
rf_version ... 177
ring ... 178
rp_previousbank... 181
rqstsk ... 182
rqtim ... 183
rx1_hreqst .. 185
rx2_habort .. 188
rx2_hreqst .. 189
rx_habort .. 191
rx_hreqst .. 192
serial_number .. 195
set_display_tab_offset ... 196
set_psssd_time .. 198
setcom ... 200
setwakeup.. 202
slptsk.. 204
statsk.. 206
stop_psssd... 207

xi

sv_currentbank... 208
symblg.. 209
symblgchksm ... 212
terminal_name ... 214
tx1_hreqst .. 215
tx2_habort .. 218
tx2_hreqst .. 219
tx_habort .. 221
tx_hreqst .. 223
txchcom.. 226
Usr_EraseE2prom.. 227
Usr_ReadE2prom .. 228
Usr_WriteE2prom... 230
writeclock ... 232
wrtim .. 234

6.2 Library VDISK ... 237
AllocFile ... 238
GetPrompt.. 240
MemoryQuantity... 243
SetPrompt .. 246
_directory ... 249
_lread ... 250
_lseek... 253
_lwrite... 256
write ... 259

A COMPATIBILITY AND PORTABILITY .. 262
DS for Formula Compatibility .. 262
Modifications that can generate compiling errors:..................................... 262
Modifications that can cause execution errors: ... 262
Modifications that can cause different behavior of the terminal:................ 263
Modifications that improve behavior of the terminal: 263
Modifications to Functions:.. 264
Added Functions: .. 265
Application Program Portability ... 266
Porting an Application from RF\SAT to STARGATE™ 267

B ERROR REPORTING... 269
Fault Code List:... 270

C BARCODE KEYPAD .. 276
Single Characters ... 276
Procedures.. 279
Erase All.. 280

xii

LIBRARY REFERENCE 6

1 LIBRARY REFERENCE

1.1 LIBRARY FUNCTIONS

This section of the manual contains the DS for Formula function description.

Each function is described in a page as in the figure below.

Function Name

Function Meaning

Syntax

File where the function is
declared

Description

Return Value

Command or paragraph to
complete the function

Note

Example code or
references to
Example program source.

The fields NOTES, SEE ALSO and EXAMPLE aren’t present if not applicable.

83

DS FOR FORMULA 6

Here is a listing of the functions by logical group:

COMMUNICATION

SERIAL CONFIGURATION:
beam... 93
setcom .. 200

SERIAL:
getcomerror... 117
rx1_hreqst ... 185
rx2_habort... 188
rx2_hreqst ... 189
rx_habort... 191
rx_hreqst ... 192
tx1_hreqst ... 215
tx2_habort ... 218
tx2_hreqst ... 219
tx_habort ... 221
tx_hreqst ... 223
txchcom... 226

STARGATE™ RF COMMUNICATION:
rf_close ... 166
rf_habort.. 167
rf_hreqst.. 168
rf_hretry... 170
rf_init ... 172
rf_read... 174
rf_stargate... 175
rf_status .. 176
rf_version .. 177

RF/SAT COMMUNICATION:
ir_habort.. 129
ir_hreqst .. 131

84

LIBRARY REFERENCE 6

DECODE AND KEYBOARD ACQUISITION

DECODE:
dec_habort .. 97
dec_hcnfg0 ... 98
dec_hreqst .. 100
dis_allsymblg .. 107
symblg... 209
symblgchksm .. 212

KEYBOARD:
kb_habort .. 137
kb_hreqst .. 138

DISPLAY , LED AND BUZZER DRIVE

DISPLAY:
backlight.. 88
contrast ... 96
gotoxy ... 118
icon_battery .. 120
icon_bell.. 122
icon_mail... 123
icon_null.. 124
icon_phone ... 125
icon_time... 126
icon_tx... 128
putchar .. 153
set_display_tab_offset .. 196

LED:
led ... 149

BUZZER:
ring .. 178

85

DS FOR FORMULA 6

E2PROM AND CLOCK

E2PROM:
Usr_EraseE2prom... 227
Usr_ReadE2prom ... 228
Usr_WriteE2prom.. 230

CLOCK:
checkwakeup .. 94
clockiset .. 95
readclock... 161
setwakeup... 202
writeclock .. 232

OPERATING SYSTEM

MEMORY:
bankset ... 89
ram_config .. 155
rp_previousbank ... 181
sv_currentbank ... 208

TERMINAL STATE and TYPE:
battery_low.. 92
enhanced_terminal.. 112
pen_portable ... 151
serial_number ... 195
terminal_name .. 214

PROGRAM CONTROL:
double_speed ... 111
exit_to_bl... 113
exit_to_rst ... 114
fault ... 115
pen_shut_down... 152
reset_sys... 163

POWER SAVING SELF SHUT DOWN:
retrig_psssd .. 165
set_psssd_time ... 198
stop_psssd.. 207

UTILITY:
ispechar .. 135
ret_proc... 164

86

LIBRARY REFERENCE 6

TIMER:
rdtimc .. 156
rdtimst ... 157
rqtim.. 183
wrtim ... 234

SCHEDULER:
dlytsk... 109
rdytsk .. 159
rqstsk .. 182
slptsk... 204
statsk... 206

The following global structures are used by the handlers to communicate with the
application:

Global Structure See Details In

extern struct dec_hanswr_message dec_answer dec_hreqst()
extern struct dec_hanswr_message dec_answer1 dec_hreqst()
extern struct dec_hanswr_message dec_answer2 dec_hreqst()
extern struct dec_hanswr_message dec_answer3 dec_hreqst()
extern struct kb_hanswr_message kb_answer kb_hreqst()
extern struct rx_hanswr_message rx_answer rx_hreqst()
extern struct tx_hanswr_message tx_answer tx_hreqst()
extern struct ir_hanswr_message ir_answer ir_hreqst()
extern struct time main_clock readclock()
extern unsigned char main__time[DIMTIMBUF] readclock()
extern unsigned char main__date[DIMDATEBUF] readclock()

87

DS FOR FORMULA 6

backlight

FUNCTION

Display backlight control.

SYNTAX

#include "library.h"
#include "genk.inc"
void backlight(unsigned char on_off);

PROTOTYPE IN

library.h

DESCRIPTION

The function controls the display backlight.

on_off = ON switch on the backlight
on_off = OFF switch off the backlight

RETURN VALUE

The function does not have any return parameters.

NOTES

This is a dummy function for F732 (excluding F732-E models) and F630 terminals.

88

LIBRARY REFERENCE 6

bankset

FUNCTION

Selection of a data RAM memory bank

SYNTAX

#include "library.h"
#include "iogenk.inc"
unsigned char bankset(unsigned char id);

PROTOTYPE IN

library.h

DESCRIPTION

The function bankset() allows selection of the overlaid 32 Kbyte data RAM banks
from 1 to N, mapped from address 8000H to FFFFH. The RAM banks 1 to N must be
addressed indirectly, for example by pointers.

The id parameter to be passed to bankset() corresponds to the RAM bank
identifier defined as:

id = SEL_OFFSET + n

where n is the RAM bank number.

The number of RAM banks available depends on the hardware configuration of the
Terminal according to the table shown in paragraph 4.1.9 "Terminal RAM
Configurations".

The function bankset() verifies that the bank requested is valid (exists within the
maximum number of banks detected at startup). Therefore, before using
bankset(), you must call the ram_config() function to verify the total amount of
RAM banks available. The maximum valid RAM bank identifier that can be passed to
bankset() is defined as:

idmax = SEL_OFFSET + ram_config() -1

It is essential that you first call the sv_currentbank() function before bankset(),
and after having finished using the bank, call the rp_previousbank(), in order not
to interfere with the Operating System. Make sure that the operations on the banked
memory are not interrupted, since the Operating System also operates on the
selection of banks.

89

DS FOR FORMULA 6

RETURN VALUE

OK
NOK the requested bank is not present in the current configuration detected

during the Startup phase.

NOTES

Remember that the data RAM bank 0 (mapped from address 0000H to 7FFFH) is
always available and is directly addressable (not banked). All the fixed allocated
variables must reside within bank 0.

In previous versions of the DSxxx, the maximum RAM bank identifier for bankset()
is defined as:

idmax = swb_ram_config -1

SEE ALSO

sv_currentbank()
rp_previousbank()
ram_config()

See paragraph 4.1.9 "RAM Functions".

EXAMPLE

#include "library.h"
#include "genk.inc"

#define DIMEMBLOCK 0X4000L /* dimension of memory /*

void verif_bankset(void)
{
unsigned char xdata *px;
unsigned int ix;

 sv_currentbank();
 if(bankset(SEL_OFFSET + 4) == NOK)
 fault(PROC_TKAPL,0,0);
 memset(RAMBANKBASEADDR, 0x55, DIMEMBLOCK);
 for(ix = 0, px = RAMBANKBASEADDR; ix < DIMEMBLOCK; ix++)
 if(*px++ != 0x55) /* indirect addressing*/
 printf("\f Error");
 rp_previousbank();
}

90

LIBRARY REFERENCE 6

This example saves the current bank, sets RAM bank 4 and initializes the memory
area based at address 8000H (the constant RAMBANKBASEADDR defined in
GENK.INC can be used) through the memset() library function with value 0X55 for
4000H locations.

Thus it checks that all written locations contain the value 0X55 by addressing them
with the px pointer; at the end it resumes the previous bank.

See also example Workdemo.003.

91

DS FOR FORMULA 6

battery_low

FUNCTION

Battery status

SYNTAX

#include "library.h"
bit battery_low(void);

PROTOTYPE IN

library.h

DESCRIPTION

The function returns the status of battery operation.

RETURN VALUE

FALSE battery running (charged)
TRUE battery not running (discharged)

NOTES

The programmer doesn’t usually need to use this function because it is the task of
the Operating System to check the battery level status and to power-off the Terminal
shutdown when the battery is discharged.

92

LIBRARY REFERENCE 6

beam

FUNCTION

RS-485 transmission/reception direction control

SYNTAX

#include "library.h"
#include "genk.inc"
void beam(unsigned char on_off);

PROTOTYPE IN

library.h

DESCRIPTION

The function switches the terminal direction-control LED on (on_off = ON) or off
(on_off = OFF) when using RS-485 interface.

With the LED ON, the transceiver is put in transmission.
With the LED OFF, the transceiver is put in reception.

NOTES

The programmer does not generally use this function as the serial communication
handler already controls switching this LED on and off.

SEE ALSO

dec_hreqst()
rx_hreqst()
tx_hreqst()

EXAMPLE

See example programs in chapter 5.

93

DS FOR FORMULA 6

checkwakeup

FUNCTION

Check the auto wake up of the Formula Terminal.

SYNTAX

#include "library.h"
unsigned char checkwakeup(void);

PROTOTYPE IN

library.h

DESCRIPTION

This function checks the auto wake up of the Formula Terminal.

RETURN VALUE

FALSE There wasn’t an auto wake up
TRUE There was an auto wake up

SEE ALSO

setwakeup()

NOTES

This is a dummy function if using the library HDLCKNWU.LIB (for F660-E, F660 and
F630 terminals).

EXAMPLE

#include "library.h"
#include "acqdef.h"
.
.
if (checkwakeup ())
 printf(“\fAuto wake up”);
else
 printf(“\fNo auto wake up”);

94

LIBRARY REFERENCE 6

clockiset

FUNCTION

Returns the status of the clock / calendar.

SYNTAX

#include "library.h"
bit clockiset(void);

PROTOTYPE IN

library.h

DESCRIPTION

The function allows you to check whether the date and time have been set at least
once (with the writeclock() procedure).

RETURN VALUE

TRUE if the clock has been set at least once;
FALSE otherwise.

NOTES

The programmer doesn’t usually need to use this function because the clock is set by
the Operating System at power-up.

SEE ALSO

writeclock()

95

DS FOR FORMULA 6

contrast

FUNCTION

Contrast variation on the graphic display.

SYNTAX

#include "library.c"
#include "iogenk.inc"
unsigned char contrast(unsigned char);

PROTOTYPE IN

library.h

DESCRIPTION

Three types of function can be obtained depending on the input parameter value:

• the contrast can be finely changed assigning a value between 0 to 15 to the
input parameter.

• the default contrast saved in E2PROM can be set and read putting the input
parameter to the value DEFAULT_CONTRAST. The default value returned for
F660 standard terminals (which have no E2prom) is 5.

• the current contrast can be read putting the input parameter to the value
CURRENT_CONTRAST.

RETURN VALUE

The return value depends on the input value:

• if input between 0 and 15, the function returns the input value.
• If input is DEFAULT_CONTRAST, the default contrast value is returned.
• If input is CURRENT_CONTRAST, the currently set contrast value is returned.

96

LIBRARY REFERENCE 6

dec_habort

FUNCTION

Barcode reading conclusion.

SYNTAX

#include "library.h"
void dec_habort(void);

PROTOTYPE IN

library.h

DESCRIPTION

Communication to handler of barcode reading decoding conclusion.

The call is necessary in all those cases of interruption or conclusion of reading.

Following dec_habort(), the predefined structure extern struct
dec_hanswr_message dec_answer is initialized and the parameter .stat assumes
the value:

ACQDIS acquisition disable.

RETURN VALUE

The function does not have any return parameters.

SEE ALSO

dec_hreqst()

EXAMPLE

See also examples in chapter 5.

97

DS FOR FORMULA 6

dec_hcnfg0

FUNCTION

Configuration of the functions associated with the Procedure Codes
from the Barcode Keypad.

SYNTAX

#include "library.h"
void dec_hcnfg0(unsigned char proc_name,

void(*relatefunct)(void));

PROTOTYPE IN

library.h

DESCRIPTION

The decoding handler allows the automatic call of a function following the reading of
a Procedure Code from the Barcode Keypad. This feature must be enabled using
MACQPROCED in dec_hreqst().

By means of dec_hcnfg0() the user can associate the function to be run with a
Procedure Code; the desired Procedure Code is specified putting a capital letter into
the input parameter proc_name.

Here is the list of the 10 available Procedure Codes and their associated letters:

Code Letter
$+0 A
$+1 B
$+2 C
$+3 D
$+4 E
$+5 F
$+6 G
$+7 H
$+8 I
$+9 J

RETURN VALUE

The function does not have any return parameters.

98

LIBRARY REFERENCE 6

SEE ALSO

dec_hreqst()

EXAMPLE

#include "library.h"
.
.
void proceventA(void)
{
 printf(“\fcode $+0 read”);
}
void proceventB(void)
{
 printf(“\fcode $+1 read”);
}

void apl_startup(void)
{
 .
 .
 dec_hcnfg0(‘A’,proceventA);
 dec_hcnfg0(‘B’,proceventB);
}

99

DS FOR FORMULA 6

dec_hreqst

FUNCTION

Barcode reading request.

SYNTAX

#include "library.h"
#include "acqk.inc"
#include "acqdef.h"
void dec_hreqst(struct dec_hreqst_message dec_hr_msg);

PROTOTYPE IN

library.h

DESCRIPTION

Request to handler for reading of a barcode according to the specifications of
dec_hr_msg:

struct dec_hreqst_message
{
 unsigned char acqmode;
 unsigned char minlen;
 unsigned char maxlen;
 unsigned char datatype;
 unsigned char codesn;
 unsigned char prompt_x;
 unsigned char prompt_y;
 unsigned char *prompt;
 unsigned char *deflt_str;
}

The parameter .acqmode defines the functioning mode of the acquisition and can
assume the following values:

MACQDEFAUL Only acquisition of common barcodes allowed. Acquisition of

Barcode Keypad codes not allowed.

100

LIBRARY REFERENCE 6

MACQSNGLCH Acquisition of single character Barcode Keypad codes allowed;
reading one of these barcodes results in the input of a
character. The barcode strings are structured according to the
following rules:
- ‘$’ followed by the character ASCII code in two digits (from

“$10” to “$99”).
- “$+-” for the character ENTER.
- “$%%” for the character BS.
It isn’t possible to acquire more than one code of this kind on
the same scanline (.codesn cannot have a value from 1-4).

MACQSNGLCHALL Acquisition of single character Barcode Keypad codes allowed.
The barcode strings are structured according to the following
rules:
- ‘$’ followed by the character ASCII code expressed with

one, two or three digits (from “$0” to “$255”).
- “$+-” for the character ENTER.
- “$%%” for the character BS.
It isn’t possible to acquire more than one code of this kind on
the same scanline (.codesn cannot have a value from 1-4).

MACQPROCED Acquisition of Procedure Codes from the Barcode Keypad and
call of the associated function. The barcodes are structured this
way: “$+” followed by one digit (from “$+0” to “$+9”).

MACQKPONLY Common barcode reading disabled. Acquisition allowed only
from Barcode Keypad.

Note that the value MACQDEFAUL can be omitted if at least one of the other modes is
selected: the reading of common barcodes is always possible if not explicitly
disabled. The other modes can be ORed together, paying attention that
MACQSNGLCH and MACQSNGLCHALL are mutually exclusive and that MACQKPONLY is
meaningful only if ORed with MACQSNGLCH or MACQSNGLCHALL or MACQPROCED.

If working with Long Range Laser Readers (F725-E and F725 terminals only), the
following values are available, to be ORed with one of the previously described
acquisition modes:

MACQLN0250 LR acquisition; aiming phase 250 ms long.
MACQLN0500 LR acquisition; aiming phase 500 ms long.
MACQLN1000 LR acquisition; aiming phase 1 s long.
MACQLN1500 LR acquisition; aiming phase 1.5 s long.
MACQLN2000 LR acquisition; aiming phase 2 s long.

The parameter .minlen indicates the minimum number of acquisition characters,
and can assume the values from 0 to NMAXCHACQ (64).

101

DS FOR FORMULA 6

The parameter .maxlen indicates the maximum number of acquisition characters
and can assume the values from 0 to NMAXCHACQ (64).

The parameter .datatype indicates the type of data accepted in the acquisition and
can assume the following values:

ACQALLPR Any printable data in the range 20H-7EH.
ACQALLPRNEW Any printable data in the range 20H-FFH.
ACQALPHA Alphabetic without punctuation 'A'-'Z' 'a'-'z'.
ACQALNUM Alphanumerical without punctuation 'A'-'Z' 'a'-'z' '0'-'9'.
ACQNUMER Whole numerical '0'-'9'.
ACQNUMDC Decimal numerical '0'-'9' '.' .
ACQHEXDC Hexadecimal '0' - '9' 'A'-'F' 'a'-'f'.
ACQBOOLN Only characters '0' or '1'
ACQ128CH All ASCII characters in the range 00H-7FH (characters from

00H to 1FH aren’t echoed on the display).
ACQ256CH All ASCII characters in the range 00H-FFH (characters from

00H to 1FH aren’t echoed on the display).

The parameter .codesn can have one of two effects, depending on the value
passed on input and only for Laser Reader Terminals. When using Pen Reader
Terminals, set this parameter to 1.

When .codesn has a value from 1 to 4, it determines the maximum number of
different barcodes on the same scanline that can be acquired with one single
acquisition process. The acquisition ends when the number of codes specified has
been captured.

If .codesn ranges from NSCAN_CMD+2 to NSCAN_CMD+5, it determines the
decoding safety of the barcode reading. The decoding safety, which can be set to a
maximum of 5, is defined as the number of consecutive readings requested to
validate a code and to successfully complete the acquisition cycle; if after 10 tries the
handler hasn’t succeeded in reading the same code for the requested consecutive
number of times, it stops the acquisition returning ACQNOV in the field .stat of the
structure dec_hanswer_message.

The parameter .*prompt is a pointer to a string that can be used to display a
message expressing the kind of request to the operator. It appears in the display
location "prompt_x", "prompt_y", when dec_hreqst() is called. Displaying the
prompt can be inhibited by using a null string.

The parameter .*deflt_str is a pointer to a default string for the output buffer. If
this string complies with the parameters that define the acquisition, it is automatically
copied to the output buffer only if the acquisition of single character Barcode Keypad
codes is allowed and one of the following actions is performed:

102

LIBRARY REFERENCE 6

- reading the single character Barcode Keypad code for ENTER
- reading the single character Barcode Keypad code for BS

In the latter case the acquisition remains pending (ACQBEG), and editing of the default
string is entered (the rightmost character isn’t deleted). This feature can be inhibited
using a null default string.

The handler always recognizes the Barcode Keypad Erase All (string “$%+”),
independently of Barcode Keypad enabling.

For Laser Reader Terminals, the handler autonomously handles laser activation
when the SCAN key is pressed. For Pen Reader Terminals, the handler keeps the
reader always on. The handler decodes the barcode scanned, checks for the number
of characters against the minimum and maximum specified, manages the data type
filter, ends the acquisition according to the programmed mode and sends a message
for both correct termination and reading not corresponding to what is expected.

The handler moreover signals an event for every code read by calling the event
function:

void dec_event(void)

CAUTION: when running dec_event(), the global structure destined to contain the final
state of the handler is not yet updated (see structure dec_hanswr_message below).

The process must be terminated with the procedure dec_habort().

The handler communicates the result of the barcode acquisition process (generically
defined acquisition process), through the global structure:

extern struct dec_hanswr_message dec_answer;

When using Laser Reader Terminals, it is possible to scan more than one barcode
on the same scanline with a single acquisition process (maximum is 4 different
barcodes). In this case, the information of the supplementary codes are available in 3
other global variables:

extern struct dec_hanswr_message dec_answer1;
extern struct dec_hanswr_message dec_answer2;
extern struct dec_hanswr_message dec_answer3;
struct dec_hanswr_message
{
 unsigned char stat;
 unsigned char len;
 unsigned char errorc;
 unsigned char datab[DIMACQDATAB];
 unsigned char symblg;
}

103

DS FOR FORMULA 6

The parameter .stat indicates the status of the acquisition. It can be read only and
may assume the following values:

ACQDIS acquisition disabled;
ACQEND acquisition cycle completed;
ACQBEG acquisition cycle begun but not completed;
ACQNOV error due to formally invalid data or decoding safety failure.

The parameter .datab[] contains the string corresponding to the code read.

The parameter .len expresses the length of the data contained in the buffer
.datab[].

The parameter .errorc is not used.

The parameter .symblg indicates the type of symbology of the code read and can
assume the following values:

ISY_NOTSET Identifier not set
ISY_MAN_INSRT Manual entry reading single character Barcode

Keypad codes.
ISY_39STD Standard 3/9
ISY_39EXT Extended 3/9
ISY_PHARMACTLI Italian pharmaceutical
ISY_PHARMACTLF French pharmaceutical
ISY_INT25 Interleaved 2/5
ISY_ITF14 ITF14
ISY_ITF14STD Standard ITF14
ISY_IND25 Industrial 2/5
ISY_MATRIX25 Matrix 2/5
ISY_C11MATRIX25 Code 11 matrix
ISY_MONARCH Monarch (2/7 family)
ISY_NW7 NW7(Codabar)
ISY_PAKO PAKO
ISY_DAIBM Delta A IBM
ISY_MSI MSI
ISY_CODE128 Code 128
ISY_CODEEAN128 Code EAN128
ISY_CODE93 Code 93
ISY_CODE93EXT Code 93 extended
ISY_ZELLWEGER Zellweger
ISY_STECH Storage Tek
ISY_UPCE UPC-E Version 0

104

LIBRARY REFERENCE 6

ISY_UPCE2D UPC-E Version 0 + Add-on 2
ISY_UPCE5D UPC-E Version 0 + Add-on 5
ISY_UPCESYS1 UPC-E Version 1
ISY_UPCESYS1_2D UPC-E Version 1 + Add-on 2
ISY_UPCESYS1_5D UPC-E Version 1 + Add-on 5
ISY_UPCA UPC-A (standard 12 digits)
ISY_UPCA2D UPC-A (standard 12 digits) + Add-on 2
ISY_UPCA5D UPC-A (standard 12 digits) + Add-on 5
ISY_UPCA13C UPC-A (13 digits)
ISY_UPCA13C2D UPC-A (13 digits) + Add-on 2
ISY_UPCA13C5D UPC-A (13 digits) + Add-on 5
ISY_UPCB UPC-B
ISY_UPCB2D UPC-B + Add-on 2
ISY_UPCB5D UPC-B + Add-on 5
ISY_EAN8 EAN-8
ISY_EAN82D EAN-8 + Add-on 2
ISY_EAN85D EAN-8 + Add-on 5
ISY_EAN13 EAN-13
ISY_EAN132D EAN-13 + Add-on 2
ISY_EAN135D EAN-13 + Add-on 5

RETURN VALUE

The function has no return parameters.

The final state reported by the handler is contained in the global structure:

extern struct dec_hanswr_message dec_answer;

When using Laser Reader Terminals, it is possible to scan more than one barcode
on the same scanline with a single acquisition process (maximum is 4 different
barcodes); in this case, the information of the supplementary codes are available in 3
other global variables:

extern struct dec_hanswr_message dec_answer1;
extern struct dec_hanswr_message dec_answer2;
extern struct dec_hanswr_message dec_answer3;

NOTES

For F725-E and F725: during the acquisition phase the LED is turned off. At the end,
its previous state is restored. When using a Long Range Laser Reader Terminal, the
LED is automatically turned on with the red color during aiming.

105

DS FOR FORMULA 6

SEE ALSO

dec_habort()
dec_hcnfg0()

EXAMPLE

See example programs in chapter 5.

106

LIBRARY REFERENCE 6

dis_allsymblg

FUNCTION

Disabling of all the symbologies decoded (SY_39STD included) and
all checksum controls.

SYNTAX

#include "library.h"
#include "acqk.inc"
void dis_allsymblg(void);

PROTOTYPE IN

library.h

DESCRIPTION

The function disables decoding of all the symbologies (SY_39STD included) and all
the checksum controls previously enabled.

RETURN VALUE

The function does not have any return parameters.

NOTES

Note that all UPC-EAN family symbologies will require the checksum control to be
enabled.

SEE ALSO

symblg()
symblgchksm()

107

DS FOR FORMULA 6

EXAMPLE

void apl_startup(void)
{
 dis_allsymblg();
 symblg(sy_enable, SY_39STD);
 symblgchksm(sy_enable, SY_39STD);
} /* end apl_startup() */

108

LIBRARY REFERENCE 6

dlytsk

FUNCTION

Delays running of a task for the specified time.

SYNTAX

#include "genk.inc"
#include "library.h"
void dlytsk(unsigned char id_tsk, unsigned int

delay_time)

PROTOTYPE IN

library.h

DESCRIPTION

The task is specified by means of its own identification code via parameter id_tsk.

For the predefined user application tasks tkapl(), tkuserapl1(), tkuserapl2()
and tkuserapl3(), the identification code can be found in GENK.INC.

If the identification code is not valid (task not allocated) an error will occur
(PROC_DLYTSK,1, id_tsk).

The parameter delay_time specifies the delay time and can assume the values
explicitly declared in the GENK.INC module. Each unit is equivalent to 50 ms.

dlytsk() sets the task specified to DELAYTSK status for the time specified, after
which the Operating System sets it automatically to READYTSK and runs it. In the
DELAYTSK state the task is not run by the scheduler.

RETURN VALUE

The function does not have any return parameters.

NOTES

Don’t use this function to delay Operating System tasks. Use this function to delay
user defined tasks or, of the predefined tasks, only the user application ones:
tkapl(), tkuserapl1(), tkuserapl2() and tkuserapl3().

109

DS FOR FORMULA 6

SEE ALSO

rdytsk()
slptsk()

EXAMPLE

void tkapl (void)
{
.
 STEP DISPLAY:
 printf("\fDISPLAY FOR 10 S");
 dlytsk(PROC_TKAPL, T10SEC);
 nextstep=next;
 ENDOFSTEP;
 STEP NEXT:
.
}

In this example the application task, following invocation of the dlytsk, suspends its
own execution (to allow display of printf). After an interval of 10 seconds the
Operating System automatically resumes execution of said task at STEP NEXT.

See also examples in chapter 5.

110

LIBRARY REFERENCE 6

double_speed

FUNCTION

Doubles program execution speed.

SYNTAX

#include "library.h"
unsigned char double_speed(unsigned char double);

PROTOTYPE IN

library.h

DESCRIPTION

This function allows doubling program execution speed (double=ON) or restoring the
standard execution speed (double=OFF).

Executing at double speed has the advantage speeding up slow pieces of program
such as long database browsing. However its disadvantage is higher power
consumption, so our advice is to use it only when it is necessary.

The default execution speed set by the Operating System at startup is the standard
one.

RETURN VALUE

This function always returns OK.

NOTES

CAUTION: This function causes serial port re-initilization, so it must not be invoked
when a serial or radio communication is in process.

This is a dummy function for Standard Terminals and for F630.

111

DS FOR FORMULA 6

enhanced_terminal

FUNCTION

Enhanced or Standard Terminal detection.

SYNTAX

#include "library.h"
bit enhanced_terminal(void);

PROTOTYPE IN

library.h

DESCRIPTION

This function allows detecting the Terminal type (Enhanced or Standard). It can be
useful when accessing resources present only on Enhanced Terminals.

RETURN VALUE

TRUE The Terminal is an Enhanced type.
FALSE The Terminal is a Standard type.

EXAMPLE

void tkapl (void)
{
.
 STEP PRINT_SN:
 if(strcmp(terminal_name(),”660”) || enhanced_terminal())
 printf(“\n%s”,serial_number());
 else
 printf(“Not available for Standard F660 Terminal”);
 ENDOFSTEP
.
}

112

LIBRARY REFERENCE 6

exit_to_bl

FUNCTION

Cancellation of the application from the Terminal’s memory.

SYNTAX

#include "library.h"
#include "genk.inc"
#include "iogenk.inc"
void exit_to_bl(void);

PROTOTYPE IN

library.h

DESCRIPTION

This function cancels the program in the terminal Flash memory and returns control
to the bootstrap loader. At this point the Terminal is ready to load another program.

RETURN VALUE

The function does not have any return parameters.

NOTES

This function can be used only in those terminals containing bootstrap loader
versions from starting from V2R0. It can be run with or without the terminal being in
its cradle and does not allow the cancelled program to be recovered in any way.

The programmer doesn’t usually need to use this function.

SEE ALSO

exit_to_rst()
reset_sys()

113

DS FOR FORMULA 6

exit_to_rst

FUNCTION

Resets the Terminal software without cancelling the program.

SYNTAX

#include "library.h"
void exit_to_rst(void);

PROTOTYPE IN

library.h

DESCRIPTION

This function makes the Operating System perform all the operations relating to the
first Terminal start-up (hardware test, various initializations, first program start-up).

RETURN VALUE

The function does not have any return parameters.

NOTES

This function can be run with or without the Terminal being in its cradle.

The programmer doesn’t usually need to use this function.

The Operating System uses this function following the reading of the Erase All
special code.

SEE ALSO

exit_to_bl()
reset_sys()

114

LIBRARY REFERENCE 6

fault

FUNCTION

Unrecoverable error handling

SYNTAX

#include "library.h"
void fault(unsigned char proc_id, unsigned char

fault_id, unsigned int mess_id);

PROTOTYPE IN

library.h

DESCRIPTION

This function homogeneously handles all those situations in which the program
detects a programming error and unrecoverable error status.

The function displays "FAULT CODE:" or "PRGM FAULT CODE:" in position 0.0 for a
few seconds and an error code in the format "PxxCyyMzzzz" in position 0.1, where:
xx proc_id Procedure that generated the error.
yy fault_id Point of the main procedure or error code returned by the

procedure called.
zzzz mess_id Any auxiliary message, e.g. No. of loops.

The error is easily identifiable because the message univocally identifies the point of
the program that generated it.

The relation between the error codes and the error causes can be found in the error
list in Appendix B "Error Reporting".

"FAULTCODE:" is displayed typically due to an unrecoverable hardware error
whereas "PRGM FAULT CODE:" is obtained as a result of a programming error (e.g.
invalid function parameters).

You are advised to adopt the same technique for other procedures defined by the
user. After the display, a system restart is performed (if the Formula Terminal is not
placed on the transceiver, it shuts down).

115

DS FOR FORMULA 6

RETURN VALUE

The function does not have any return parameters.

SEE ALSO

restart_sys()

EXAMPLE

In the following example, an error is generated on a Terminal equipped with 512K of
RAM, for which the last available bank index is 15.

void tkapl(void)
{
.
 if(bankset(SEL_RAMB_16) != OK)
 fault(PROC_TKAPL, 16, nextstep);
.
}

116

LIBRARY REFERENCE 6

getcomerror

FUNCTION

Requests the status of the serial communication when using the
handler implemented in HDLCOM20.LIB.

SYNTAX

#include "library.h"
unsigned char getcomerror(void);

PROTOTYPE IN

library.h

DESCRIPTION

Requests the status of the serial communication, eliminating any errors present.

RETURN VALUE

This function returns to the following states:

RX_VECTOR activates the reception function rxchcom()
RX_HABORT reception has been disabled
RX_PARITY_ERROR a character was received with incorrect parity
TX_VECTOR interrupt transmission function enabled
TX_HABORT transmission aborted

The preceding parameters can be ORed together.

SEE ALSO

rx2_habort() tx2_habort() rxchcom()
rx2_hreqst() tx2_hreqst() txchcom()
 setcom()

EXAMPLE

See example Workdemo.003.

117

DS FOR FORMULA 6

gotoxy

FUNCTION

Positioning of the display cursor

SYNTAX

#include "library.h"
void gotoxy(unsigned char column, unsigned char row);

PROTOTYPE IN

library.h

DESCRIPTION

The function places the display cursor (not shown) in any accepted position. The next
display after the call to gotoxy() is positioned at the display point identified by
column and row.

column varies from 0 to 15;
row varies from 0 (first line) to 3 (fourth line);

RETURN VALUE

The function does not have any return parameters.

SEE ALSO

putchar()
printf()

118

LIBRARY REFERENCE 6

EXAMPLE

#include <stdio.h>
#include "library.h"
 void first_pos_visual(void)
{
 gotoxy(0, 0);
 printf("!");
}

This example displays an exclamation mark in the first position of the first line of the
display using the position control procedure gotoxy.

See also examples in chapter 5.

119

DS FOR FORMULA 6

icon_battery

FUNCTION

Handling “battery” icon on the graphic display

SYNTAX

#include "library.h"
void icon_battery(unsigned char);

PROTOTYPE IN

library.h

DESCRIPTION

The icon_battery function allows you to turn all the segments of the
corresponding icon on or off independently.

Here are the available values for the input parameter:

0 All segments on.
1 The two rightmost segments on.
2 Only the rightmost segment on.
3 All the segments off, icon edge on.
≥4 All the segments and icon edge off.

RETURN VALUE

The function does not have any return parameters.

SEE ALSO

icon_nul()
battery_low()

120

LIBRARY REFERENCE 6

EXAMPLE

#include “library.h”
void batt_warning_off_event(void)
{
 icon_battery(0); /* level "0" correspond at the maximun

charge */
}
void batt_warning_event(unsigned char level)
{
 icon_battery(level); /* levels of battery_warning = 1, 2, 3 */
}

See also examples in chapter 5.

121

DS FOR FORMULA 6

icon_bell

FUNCTION

Turning on or off the “bell” icon on the graphic display.

SYNTAX

#include "library.h"
void icon_bell(unsigned char);

PROTOTYPE IN

library.h

DESCRIPTION

To turn the icon on or off, you must give the function a parameter having an
OFF value, respectively.

RETURN VALUE

The function does not have any return parameters.

SEE ALSO

icon_null()

122

 ON or

LIBRARY REFERENCE 6

icon_mail

FUNCTION

Turning the “letter” icon on or off on the graphic display.

SYNTAX

#include "library.h"
void icon_mail(unsigned char);

PROTOTYPE IN

library.h

DESCRIPTION

To turn the icon on or off, you must give the function a parameter havin
OFF value, respectively

RETURN VALUE

The function does not have any return parameters.

SEE ALSO

icon_null()

g an ON or

123

DS FOR FORMULA 6

icon_null

FUNCTION

Turning off of all the icons on the graphic display

SYNTAX

#include "library.h"
void icon_null(void);

PROTOTYPE IN

library.h

RETURN VALUE

The function does not have any return parameters.

124

LIBRARY REFERENCE 6

icon_phone

FUNCTION

Turning on or off of the “speaker” icon on the graphic displa

SYNTAX

#include "library.h"
void icon_phone(unsigned char*);

PROTOTYPE IN

library.h

DESCRIPTION

The function icon_phone() allows you to handle the turning on and off
individual segment of the icon.

The parameter requested by the function is the pointer to an array of three el
each of which can have the value ON or OFF, depending on the need to
relative segment on or off.

The first element of the array corresponds to the leftmost segment of the icon

RETURN VALUE

The function does not have any return parameters.

SEE ALSO

icon_null()

y.

of each

ements,
turn the

.

125

DS FOR FORMULA 6

icon_time

FUNCTION

Handling the clock icon on the graphic display.

SYNTAX

#include "library.h"
void icon_time(unsigned char*);

PROTOTYPE IN

library.h

DESCRIPTION

The function icon_time() permits you to display time information in the format
hh:mm.

To do this, you must give the function the pointer with a string of these 5 elements:

h h : m m

To turn off the icon, simply give the function a pointer with a null string.

RETURN VALUE

The function does not have any return parameters.

SEE ALSO

icon_null()
readclock()

126

LIBRARY REFERENCE 6

EXAMPLE

#include "library.h"
extern unsigned char main_time[DIMTIMEBUF]; /* variable handled by
the OS. */
static unsigned char prev_min = 0;

/*
 *User available task;
 *used for time display; woken up by second_event() each second
 */
void second_event(void)
{
 rdytsk(PROC_TKUSERAPL2);
}

void tkuserapl2(void)
{
 if(prev_min != main_time[4]) /* write every minute */
 {
 prev_min = main_time[4];
 icon_time(main_time);
 }
 slptsk(PROC_TKUSERAPL2);
}

See also examples in chapter 5.

127

DS FOR FORMULA 6

icon_tx

FUNCTION

Turning on and off the “transmission" icon on the graphic disp

SYNTAX

#include "library.h"
void icon_tx(unsigned char*);

PROTOTYPE IN

library.h

DESCRIPTION

The function icon_tx() allows you to manage the turning on and off o
individual segment of the icon.

The parameter requested by the function is the pointer to an array of 4 ele
each of which can take on the values ON or OFF, depending on the need to tu
corresponding segment on or off.

The first element of the array corresponds to the leftmost segment of the icon.

RETURN VALUE

The function does not have any return parameters.

SEE ALSO

icon_null()

128

lay.

f each

ments,
rn the

LIBRARY REFERENCE 6

ir_habort

FUNCTION

End of communication with the network master device (the RF
Satellite)

SYNTAX

#include "library.h"
void ir_habort(void);

PROTOTYPE IN

library.h

DESCRIPTION

Communication to the handler about the end of RF communication.

The call must be invoked each time the communication is interrupted or terminated. It
disables all the tasks, drivers and hardware involved in the RF communication,
resumes the previously set communication parameters and switches the
microcontroller serial port to optical transceiver serial communication.

Following ir_habort() the predefined overall structure

extern struct ir_hanswr_message ir_answer

is initialized and the parameter .stat takes up the value:

ACQDIS acquisition disabled;

RETURN VALUE

The function does not have any return parameters.

NOTES

This is a dummy function if using the library EMPTYRF.LIB (which is advised for
Formula terminals without RF modules).

129

DS FOR FORMULA 6

SEE ALSO

ir_hreqst()

See paragraph 4.1.6. "Radio Frequency Communication Handler Functions - RF/SAT
based systems".

See also reference manual of "RF/SAT"and"Fastnet".

EXAMPLE

See example Workdemo.004.

130

LIBRARY REFERENCE 6

ir_hreqst

FUNCTION

Request communication with the network master device (the RF
Satellite)

SYNTAX

#include "library.h"
#include "acqk.inc"
#include "acqdef.h"
void ir_hreqst(struct ir_hreqst_message ir_hr_msg);

PROTOTYPE IN

library.h

DESCRIPTION

Request to RF communication handler for the transmission and reception of data
according to the specifications set in the input parameter.

The input parameter ir_hr_msg has the following format:

struct ir_hreqst_message
{
 unsigned int len;
 unsigned char *datap;
 unsigned char st_addr;
 unsigned char protc;
 unsigned int lenrx;
 unsigned char *rx_datap;
 unsigned int timeout;
};

The parameter .len defines the number of characters to transmit contained in the
buffer; its maximum value is NMaxChTxlr (65000).

The parameter .*datap is the pointer to the data buffer to transmit (this buffer must
be stated in the application program).

The parameter .st_addr defines the station address that identifies the Terminal at
satellite level.

131

DS FOR FORMULA 6

The parameter .protc take up the following value:
PROTNOSEND Prompt activation of the transmission

Invocation of the handler enables all the tasks, drivers and hardware involved in the
RF communication and switches the serial port of the microcontroller to the RF board
preventing use of the serial communication towards the transceiver.

This means that the serial communication handler (towards the transceiver) and RF
communication handler must be used in a mutually exclusive manner.

The RF communication handler autonomously manages transmission (or reception)
of data to or from the Satellite with a dedicated protocol. The entire transmission
buffer is handled with a single call. A message is sent for both correct termination
and error status.

The process must be terminated with the procedure ir_habort(), which must also
be invoked inside the event function insertion_event().

A character that acts as a record separator will have to be inserted within the
transmitted buffer from Terminal to the satellite, since the protocol towards the
network is a frame type one.

The record separator is the character '\r'.

The parameter .lenrx stands for the maximum size of the receiving data buffer.

The parameter .rx_datap is the pointer to the receiving data buffer (this buffer
must be declared in the application program).

The range of characters accepted in the buffer is 00H to FFH with the exception of
the character ETX (03H).

The maximum number of characters per record is 244.

The .timeout parameter represents the maximum time in seconds that the
Terminal will wait to carry out the connection. The handler communicates the result
of the transmission process of the entire buffer to the external via a global structure:

132

LIBRARY REFERENCE 6

extern struct ir_hanswr_message ir_answer;
struct ir_hanswr_message
{
 unsigned char stat;
 unsigned char len;
 unsigned char errorc;
 unsigned char event;
 unsigned char datab[1];
 unsigned char satellite;
};

The parameter .stat indicates the acquisition status; it may be read only and can
take up the following values:

ACQDIS acquisition disabled;
ACQBEG acquistion cycle begun but not completed;
ACQACT acquisition cycle active at driver level;
ACQCON connection established at driver level;
ACQNOV connection failed in timeout;
ACQEND acquisition cycle completed;

The parameter .len expresses the number of characters actually transmitted.

When .stat takes the value ACQNOV, the parameter .errorc expresses the
following values:

NoError no error;
RetriesExceeded too many retries in transmission;
TxTimeOut connection not concluded within timeout;

The parameter .event indicates if a transmission or a reception or both have been
terminated; it may be read only and can take up the following values:

TX_END transmission termination;
RX_END reception termination;

Parameter .datab[] is not used.

The .satellite parameter indicates the address of the satellite that is currently in
comunication with the Formula Terminal.

133

DS FOR FORMULA 6

RETURN VALUE

The function does not have return parameters. The handler parameters are
contained in the global structure

extern struct ir_hanswr_message ir_answer

NOTES

The transmission reception buffer must not be changed during the transmission or
reception process, and must be allocated to the first 32 Kb XDATA memory segment.

Data buffers split up into separate memory banks cannot be used. Until the RF link
ends via stat signalling without ACQDIS, ACQNOV, ACQEND, the application program
must not execute other operations; otherwise the RF communication link may not
complete itself successfully.

This is a dummy function if using the library EMPTYRF.LIB (which is advised for
Formula terminals without RF modules).

SEE ALSO

ir_habort()

See paragraph 4.1.6. "Radio Frequency Communication Handler Functions - RF/SAT
based systems".

See also reference manual of "RF/SAT" and "Fastnet".

EXAMPLE

See example Workdemo.004.

134

LIBRARY REFERENCE 6

ispechar

FUNCTION

Checks the range an ASCII character belongs to

SYNTAX

#include "library.h"
#include "genk.inc"
unsigned char ispechar(unsigned char tested_ch,

unsigned char ch_specification);

PROTOTYPE IN

library.h

DESCRIPTION

The function returns OK if the value of tested_ch is within the range of
ch_specification, expressed as:

ACQALLPR any printable data in the range 20H-7EH
ACQALLPRNEW any printable data in the range 20H-FFH
ACQALPHA alphabetic without punctuation 'A'-'Z' 'a'-'z'
ACQALNUM alphanumerical without punctuation 'A'-'Z' 'a'-'z' '0'-'9'
ACQNUMER numeric integer '0'-'9'
ACQNUMDC decimal numerical '0'-'9' '.'
ACQHEXDC hexadecimal '0' - '9' 'A'-'F' 'a'-'f'
ACQBOOLN only the characters '0' or '1'
ACQ128CH all ASCII characters in the range 00H-7FH.
ACQ256CH all ASCII characters in the range 00H-FFH.

RETURN VALUE

OK, NOK.

SEE ALSO

dec_hreqst()
kb_hreqst()

135

DS FOR FORMULA 6

EXAMPLE

See examples in chapter 5.

136

LIBRARY REFERENCE 6

kb_habort

FUNCTION

End of keyboard acquisition. Deactivation of keyboard sections.

SYNTAX

#include "library.h"
void kb_habort(void);

PROTOTYPE IN

library.h

RETURN VALUE

The function does not have any return parameters.

NOTES

The call is mandatory in all cases of interruption or conclusion of the reading.

Following kb_habort(), the predefined global structure extern struct
kb_hanswr_message is initialized and the parameter .stat assumes the value:

ACQDIS disabled acquisition.

SEE ALSO

kb_hreqst()

EXAMPLE

See examples in chapter 5.

137

DS FOR FORMULA 6

kb_hreqst

FUNCTION

Request a string acquisition from the keyboard. Activation of keyboard
sections. Several differences between F630 terminals (three keys only)
and the other Formula Basic Line Terminals are reported.

SYNTAX

#include "library.h"
#include "acqk.inc"
#include "acqdef.h"
void kb_hreqst(struct kb_hreqst_message kb_hr_msg);

PROTOTYPE IN

library.h

DESCRIPTION

¾ For F734-E, F734, F732-E, F732, F660-E and F660 terminals:

Request to keyboard handler for acquisition of a string and activation of the keyboard
sections according to specification in structure kb_hr_msg, defined as follows:

struct kb_hreqst_message
{
 unsigned char acqmode;
 unsigned char minlen;
 unsigned char maxlen;
 unsigned char datatype;
 unsigned char section;
 unsigned char prompt_x;
 unsigned char prompt_y;
 unsigned char *prompt;
 unsigned char *deflt_str;
};

138

LIBRARY REFERENCE 6

The parameter .acqmode defines the acquisition functioning mode, and can assume
the following values:
MACQDEFAUL following functions disabled
MACQAUTORP enables incremental autorepeat in Console and Arrow sections
MACQONENTR SCAN key acts as ENTER.
MACQCAPSMA enables the switch between lowercase and uppercase through

SHIFT toggling.

Note that the value MACQDEFAUL can be omitted if at least one of the other modes is
selected. The other modes can be ORed together.

The parameter .minlen indicates the minimum number of acquisition characters,
and may assume the following values from 0 to NMAXCHACQ (64).

The parameter .maxlen indicates the maximum number of characters of the
acquisition and may assume the values from 0 to NMAXCHACQ (64).

The parameter .datatype indicates the type of data accepted in the acquisition,
and may assume the following values:

ACQALLPR any printable character in the range 20H-7EH
ACQALLPRNEW any printable character in the range 20H-FFH
ACQALPHA alphabetical without punctuation 'A'-'Z' 'a'-'z'
ACQALNUM alphanumeric without punctuation 'A'-'Z' 'a'-'z' '0'-'9'
ACQNUMER numeric integer '0'-'9'
ACQNUMDC numeric decimal '0'-'9' '.'
ACQHEXDC hexadecimal '0' - '9' 'A'-'F' 'a'-'f'
ACQBOOLN only characters '0' or '1'
ACQ128CH all ASCII characters in the range 00H-7FH
ACQ256CH all ASCII characters in the range 00H-FFH

The parameter .section defines which sections of the keyboard you want to
enable; it can assume the following values:

SECTDEFAUL all sections disabled;
SECTCONSOL enables CONSOLE section (alphanumeric, ENTER and BS);
SECTARROWS enables ARROW keys section;
SECTFUNCTN enables FUNCTION keys section (F1, F2, F3, F4 and ESC;

moreover, only for F734 and F732 in both Standard and
Extended version: SHIFT+F1, SHIFT+F2, SHIFT+F34 and
SHIFT+F4 combinations);

139

DS FOR FORMULA 6

SECTSENDIR enables the SEND key section (F660 and F660-E; for F734,
F732 and F725 in both Standard and Extended version the
SEND key is emulated with the combination SHIFT+ESC);

SECTONKEYS enables SCAN key section.

Note that the value SECTDEFAUL can be omitted if at least one of the other keyboard
section is selected. The other sections can be ORed together.

The parameter .*prompt is a pointer to a string that can be used to display a
message expressing the kind of request to the operator; it appears in the display
location "prompt_x", "prompt_y", when the kb_hreqst() is called. Displaying the
prompt can be inhibited using a null string.

The parameter .*deflt_str is a pointer to a default string for the output buffer. If
this string complies with the parameters that define the acquisition, it is automatically
copied to the output buffer only if the CONSOLE section has been enabled and one
of the following actions is performed:
- Pressing of ENTER;
- Pressing of BS.

In the latter case the acquisition remains pending (ACQBEG), and the editing of the
default string is entered (the rightmost character isn’t deleted). This feature can be
inhibited using a null default string.

The handler autonomously handles the acquisition of a string of characters, the
control of the minimum and maximum number of characters, the filter of the type of
data requested, rightmost character deletion by BS key, end of acquisition with
ENTER, the shift mode and independent handling of the FUNCTION, ARROW and
SCAN keys.

The handler moreover signals an event for every key pressed by calling the event
function:

void kb_event(void);

CAUTION: when running kb_event(), the global structure destined to contain the
final state of the handler is not yet updated (see the following structure
kb_hanswr_message).

The process must be terminated with the kb_habort() procedure.

140

LIBRARY REFERENCE 6

The handler communicates the result of the string acquisition process (generically
defined acquisition process) via the global structure:

extern struct kb_hanswr_message kb_answer;
struct kb_hanswr_message
{
 unsigned char stat;
 unsigned char len;
 unsigned char errorc;
 unsigned char datab[DIMACQDATAB];
};

The parameter .stat indicates acquisition status; it may be only read and may
assume the following values:

ACQDIS acquisition disabled;
ACQEND acquisition cycle completed;
ACQBEG acquisition cycle started but not completed.

The parameter .datab[] contains the acquired string.

The parameter .len expresses the length of the data contained in the buffer
.datab[].

The parameter .errorc is not used.

The pressing of CONSOLE, ARROW, FUNCTION and SCAN keys generate calls to
event functions; these functions have an input parameter (key_code) through which
the key pressed is signalled to the application program; the procedures and the
available values for key_code are listed in the following, depending on the section
enabled:

If the CONSOLE section is enabled (SECTCONSOL):

void kb_hactiv_consol(unsigned char key_code)

key_code values:
MULTIPLE0
MULTIPLE1
MULTIPLE2
MULTIPLE3
ENTER
BACKSPACE
SHIFT
ENDSHIFTIMER
SHIFTSTATUS
ENDSHIFTSTATUS
ERROR

141

DS FOR FORMULA 6

Note: MULTIPLE0, MULTIPLE1, MULTIPLE2 and MULTIPLE3 signal which one of
the four available symbols has been input when pressing an alphanumeric key;
ENDSHIFTIMER signals the timeout for the input of the alphanumeric characters;
SHIFSTATUS and ENDSHIFTSTATUS signal start and end of the shift mode; ERROR
signals en editing error (that is: character not admitted by the acquisition
configuration or buffer full or pressing BS with buffer empty).

As an example, suppose you press the SHIFT key and then press the key with
symbols ‘7’, ‘A’, ‘B’, ‘C’ twice. Here is the corresponding sequence of calls of the
event function kb_hactiv_consol():
- pressing SHIFT generates two calls, with key_code SHIFT and SHIFTSTATUS

(shift mode is entered);
- pressing the ‘7’ key for the first time generates another call, with key_code

MULTIPLE1;
- pressing the ‘7’ key for the second time generates another call, with key_code

MULTIPLE2;
- then, at the shift mode timeout, two calls are generated, with key_code

ENDSHIFTIMER and ENDSHIFTSTATUS (shift mode exited).

If the ARROW keys section is enabled (SECTARROWS):

void kb_hactiv_arrows(unsigned char key_code)

key_code values:
LFT
RGT
UP
DWN

If the FUNCTION keys section is enabled (SECTFUNCTN):

void kb_hactiv_functn(unsigned char key_code)

key_code values:
F1
F2
F3
F4
ESC

142

LIBRARY REFERENCE 6

For Terminals F734 and F732, in both Standard and Enhanced versions, if the
FUNCTION keys section is enabled (SECTFUNCTN) and combinations
SHIFT+Function key are pressed:

void kb_hactiv_sfnctn(unsigned char key_code)

key_code values:
F1
F2
F3
F4

For Terminals F734, F732 and F725, in both Standard and Enhanced versions, if the
SEND key section is enabled (SECTSENDIR) and the combination SHIFT+ESC is
pressed:

void kb_hactiv_sfnctn(unsigned char key_code)

key_code values:
ESC

For Terminals F660 and F660-E, if the SEND key section is enabled (SECTSENDIR)
and the SEND key is pressed:

void kb_hactiv_sfnctn(unsigned char key_code)

key_code values:
ESC

If the SCAN key section is enabled (SECTONKEYS):

void kb_hactiv_onkeys(void)

In the above mentioned procedures, which must be implemented in APL.C, the
programmer inserts the code (program) required to customize, in detail, use of the
keyboard and user interface (acoustic signals, cursor type, etc.).

143

DS FOR FORMULA 6

¾ For F630 terminals only:

Request to keyboard handler for activation of the keyboard sections and acquisition
of a default string (since there are no CONSOLE keys) according to specification in
structure kb_hr_msg, defined as follows:

struct kb_hreqst_message
{
 unsigned char acqmode;
 unsigned char minlen;
 unsigned char maxlen;
 unsigned char datatype;
 unsigned char section;
 unsigned char prompt_x;
 unsigned char prompt_y;
 unsigned char *prompt;
 unsigned char *deflt_str;
};

The parameter .acqmode defines the acquisition functioning mode, and can assume
the following values:

MACQDEFAUL following functions disabled
MACQAUTORP enables incremental autorepeat in Arrow sections
MACQONENTR SCAN key acts as ENTER.
MACQSTNDON disables the SCAN key as a multifunction key:
 ENTER key not emulated (unless enabled by MACQONENTR)
 ARROW selector not emulated (therefore no LEFT or RIGHT)
 F1 not emulated

Note that the value MACQDEFAUL can be omitted if at least one of the other modes is
selected. The other modes can be ORed together.

The parameter .minlen indicates the minimum number of characters in the default
string and may assume the following values from 0 to NMAXCHACQ (64). We suggest
to put it to 0.

The parameter .maxlen indicates the maximum number of characters in the default
string and may assume the values from 0 to NMAXCHACQ (64). If the default string is
used, we suggest to put it to NMXCHACQ, otherwise put it to 0.

The parameter .datatype indicates the type of data accepted in the acquisition. We
suggest to put it to the value ACQALLPRNEW.

144

LIBRARY REFERENCE 6

The parameter .section defines which sections of the keyboard you want to enable
and therefore the role of the multi-function SCAN key. It can assume the following
values:

SECTDEFAUL all sections disabled
SECTONKEYS enables SCAN key section
SECTCONSOL enables CONSOLE section (ENTER is emulated by SCAN key)
SECTARROWS enables ARROW key section (UP and DOWN keys emulate

LEFT and RIGHT keys with the SCAN key acting as the
selector for either UPDWNARROWS or LFTRGTARROWS)

SECTFUNCTN enables FUNCTION key section (ESC emulated by pressing
the UP and DOWN keys simultaneously, F1 emulated by
pressing SCAN for 1.5 seconds)

Note that the value SECTDEFAUL can be omitted if at least one of the other keyboard
section is selected. The other sections can be ORed together in any combination
keeping in mind that for multiple selections the SCAN key has the following priority:

1 SCAN key
2 ENTER key
3 UPDWNARROWS, LFTRGTARROWS and F1 keys

The parameter .*prompt is a pointer to a string that can be used to display a
message expressing the kind of request to the operator; it appears in the display
location "prompt_x", "prompt_y", when the kb_hreqst() is called. Displaying the
prompt can be inhibited using a null string.

The parameter .*deflt_str is a pointer to a default string for the output buffer.
If this string complies with the parameters that define the acquisition, it is
automatically copied to the output buffer only if the CONSOLE section has been
enabled and SCAN acting as ENTER is pressed. This feature can be inhibited using
a null default string.

The handler autonomously manages:
- the acquisition of a default string after the ENTER key is pressed.
- the SCAN key selection
- the UP DOWN arrow key selection
- the LEFT RIGHT arrow key selection (emulated by the UP and DOWN keys with

the SCAN key acting as the selector for either UPDWNARROWS or
LFTRGTARROWS

- the FUNCTION key selection (ESC emulated by pressing the UP and DOWN
keys simultaneously, F1 emulated by pressing SCAN for 1.5 seconds)

145

DS FOR FORMULA 6

Regarding the initialization of the ARROW key selections (either UP and DOWN or
LEFT and RIGHT), the handler initializes the UP and DOWN keys whenever there
user makes two keyboard handler requests in which the first does not make a
request to enable the SCAN key but the second request does.

The handler moreover signals an event for every key pressed by calling the event
function:

void kb_event(void)

CAUTION: when running kb_event(), the global structure destined to contain the
final state of the handler is not yet updated (see structure kb_hanswr_message
below).

The process must be terminated with the kb_habort() procedure.

The handler communicates the result of the string acquisition process (generically
defined acquisition process) via the global structure:

extern struct kb_hanswr_message kb_answer;
struct kb_hanswr_message
{
 unsigned char stat;
 unsigned char len;
 unsigned char errorc;
 unsigned char datab[DIMACQDATAB];
};

The parameter .stat indicates acquisition status; it may be only read and may
assume the following values:

ACQDIS acquisition disabled;
ACQEND acquisition cycle completed;
ACQBEG acquisition cycle started but not completed.

The parameter .datab[] contains the acquired default string.

The parameter .len expresses the length of the data contained in the buffer
.datab[].

The parameter .errorc is not used.

The pressing of SCAN, CONSOLE, ARROW and FUNCTION keys generate calls to
event functions. These functions have an input parameter (key_code) through which
the key pressed is signaled to the application program. The procedures and the

146

LIBRARY REFERENCE 6

available values for key_code are listed in the following, depending on the section
enabled:

If the SCAN key section is enabled (SECTONKEYS):

void kb_hactiv_onkeys(void)

If the CONSOLE section is enabled (SECTCONSOL):

void kb_hactiv_consol(unsigned char key_code)

key_code value:
ENTER

If the ARROW keys section is enabled (SECTARROWS):

void kb_hactiv_arrows(unsigned char key_code)

key_code values:
UP
DWN
LFT
RGT
UPDWNARROWS
LFTRGTARROWS

If the FUNCTION key section is enabled (SECTFUNCTN):

void kb_hactiv_functn(unsigned char key_code)

key_code value:
ESC
F1

In the above mentioned procedures, which must be implemented in APL.C, the
programmer inserts the code (program) required to customize, in detail, use of the
keyboard and user interface (acoustic signals, cursor type, etc.).

RETURN VALUE

The function does not have any return parameters.

The handler return parameters are contained in the global structure:

extern struct kb_hanswr_message kb_answer

SEE ALSO

kb_habort()

147

DS FOR FORMULA 6

EXAMPLE

See examples in chapter 5.

148

LIBRARY REFERENCE 6

led

FUNCTION

Controls the LED indicator.

SYNTAX

#include "library.h"
#include "iogenk.inc"
void led(unsigned char operation);

PROTOTYPE IN

library.h

DESCRIPTION

The function controls switching the terminal LED indicator on and off in green, red,
and yellow/orange.

The operation parameter can assume the following values, predefined in
IOGENK.INC:

OFFLEDS LED switched off
ONREDLD LED switched on - red
ONGRELD LED switched on - green
ONYELLD LED switched on - yellow/orange

RETURN VALUE

The function does not have any return parameters.

149

DS FOR FORMULA 6

EXAMPLE

void tkuserapl1(void)
{
static unsigned char tkledstatus;
 dlytsk(PROC_TKUSERAPL1, T100MS); /* on time */
 switch(tkledstatus)
 {
 case 1:
 led(ONGRELD);
 tkledstatus++;
 return;
 case 2:
 led(OFFLEDS);
 dlytsk(PROC_TKUSERAPL1, T900MS); /* off time */
 tkledstatus++;
 return;
 default: /* self initialization */
 tkledstatus = 1;
 } /* case */
}

This task causes the green LED to flash with a frequency of 1 second and switch-on
time of 100 ms, without blocking the operating system.

See examples in chapter 5.

150

LIBRARY REFERENCE 6

pen_portable

FUNCTION

Terminal insertion state in the transceiver.

SYNTAX

#include "library.h"
bit pen_portable(void);

PROTOTYPE IN

library.h

DESCRIPTION

The function returns the insertion or non-insertion status of the Terminal in the
transceiver.

RETURN VALUE

FALSE Terminal inserted in the transceiver
TRUE Terminal removed from the transceiver

EXAMPLE

void apl_restart(void)
{
 if(pen_portable())
 nextstep = CLEAR_START;
 else
 nextstep = PREPARE_TX;
} /* end apl_restart() */

See examples in chapter 5.

151

DS FOR FORMULA 6

pen_shut_down

FUNCTION

Immediate shut-down of the Terminal

SYNTAX

#include "library.h"
void pen_shut_down(void);

PROTOTYPE IN

library.h

DESCRIPTION

Immediate shut-down of the Terminal after calling the event function
shut_down_event() which must be implemented in APL.C. Remember that in this
state RAM-data memory and clock are powered to ensure the data is kept stored.

The Terminal switches on again by pressing the SCAN key and when inserted in the
transceiver.

The function has no effect if the Terminal is inserted in the transceiver.

RETURN VALUE

The function does not have any return parameters.

152

LIBRARY REFERENCE 6

putchar

FUNCTION

Writes a character to the display.

SYNTAX

#include <stdio.h>
char putchar(char c);

PROTOTYPE IN

stdio.h

DESCRIPTION

The function putchar() is the lowest level function to re-direct the output of the
functions of the standard library of the C51 like printf(), puts(), etc. It has been
directed towards the display driver so that the standard functions of the C-Language
are used for all the displays and formattings.

putchar() displays one single character c and increases the cursor by one
position.

The specific characters displayed by the graphic LCD are configurable, see
paragraph 3.8 "Display Fonts".

For the reduced font set (ASCII codes from 20H to 9FH), see paragraph 3.8 "Display
Character Maps".

The escape sequences have been suitably adapted to the particular type of display
available in order to control the display position and cursor type and position:

\r display on the first column of current line
\n display on the next line first column, if the cursor is in third line, the next is the first
\b cursor moves one place to the left
\f deletion of the display, display in position 0.0
\a emission of a tone
\1 cursor off (default)
\2 cursor on

The escape sequences may be included in the displayed strings displayed via
printf().

153

DS FOR FORMULA 6

RETURN VALUE

The input parameter c.

SEE ALSO

gotoxy()
set_display_tab_offset()

C-51 Library Reference Manual.

See DS for Formula paragraph 3.8 "Display Fonts".

EXAMPLE

#include <library.h>
#include "stdio.h"
 void bottom_right_visual(void)
{
 gotoxy(15, 3)
 putchar('!');
}

The procedure displays an exclamation point in the last position of the fourth line of
the display.

154

LIBRARY REFERENCE 6

ram_config

FUNCTION

This function returns the total number of Terminal RAM banks.

SYNTAX

#include "library.h"
unsigned char ram_config(void);

PROTOTYPE IN

library.h

DESCRIPTION

During the first start-up, the Terminal Operating System performs a RAM auto-
detection to determine the total number of 32 Kb RAM banks present on the Terminal
(including bank 0) (see paragraph 4.1.1). This value is returned by the function
ram_config()and must be used to determine the maximum selectable RAM bank
number (idmax), for the function bankset().

Terminal Configuration Total number of RAM banks (including bank 0)
128 K 4
512 K 16
1024 K 32
2048 K 64

RETURN VALUE

The function ram_config() returns the value of the total number of RAM banks.

NOTES

In previous versions of the DSxxx, Terminal RAM configuration was managed
through the global variable swb_ram_config, which has the following relationship
to ram_config():

swb_ram_config = ram_config() + SEL_OFFSET.

SEE ALSO

bankset()

155

DS FOR FORMULA 6

rdtimc

FUNCTION

Reads the counter of the timer specified.

SYNTAX

#include "library.h"
unsigned int rdtimc(unsigned char id_timer);

PROTOTYPE IN

library.h

DESCRIPTION

The function returns the counter of the timer specified by its own identification code:
id_timer.

The timer counter is an unsigned integer type one and, if the timer is RUNTIM,
expresses the number of units of time left until expiry and therefore until the ENDTIM
state is entered. Each unit of time is worth 50 ms

RETURN VALUE

Timer counter.

SEE ALSO

rqtim()
wrtim()

See also example programs in chapter 5.

156

LIBRARY REFERENCE 6

rdtimst

FUNCTION

Reads the status of the timer specified.

SYNTAX

#include "library.h"
unsigned char rdtimst(unsigned char id_timer);

PROTOTYPE IN

library.h

DESCRIPTION

The function returns the status of the timer specified by its own identification code,
id_timer.

RETURN VALUE

Timer status:

IDLETIM timer idle
RUNTIM timer running (decreasing)
ENDTIM timer expired (the set time has elapsed).

SEE ALSO

rqtim()
wrtim()

See also example programs in chapter 5.

EXAMPLE

This example is a section of the application task (incomplete) which shows how a
polling timer can be used to implement a timeout while running other operations.

The application program, in STEP 410, has enabled reception of a frame via serial
line and has loaded a timer for 10 seconds.

157

DS FOR FORMULA 6

In STEP 420 the application program waits for the end of the correct or incorrect
reception and simultaneously displays the time on the display and checks whether
the timer has expired (ENDTIM): in this case, after setting the timer to idle, it aborts
the reception.

void tk_apl (void)
{
 .
 .
 STEP 410:
 rx_hreqst();
 wrtim(idt_apl1, RUNTIM, T10SEC);
 nextstep = 420;
 ENDOFSTEP;

 STEP 420:
 if(rx_answer.stat == ACQEND)
 {
 .
 .
 rx_habort();
 nextstep = 440;
 }
 else if (rx_answer.stat == ACQNOV)
 {
 .
 .
 rx_habort();
 nextstep = 450;
 }
 if(rdtimst(idt_apl1) == ENDTIM)
 {
 wrtim(idt_apl1, IDLETIM, O);
 rx_habort();
 nextstep = 430;
 }
 ENDOFSTEP;
 .
 .
}

158

LIBRARY REFERENCE 6

rdytsk

FUNCTION

Sets the specified task to the READYTSK state.

SYNTAX

#include "library.h"
#include "genk.inc"
void rdytsk(unsigned char id_tsk);

PROTOTYPE IN

library.h

DESCRIPTION

The task is specified by means of its own identification code.

For the predefined user application tasks tkapl(), tkuserapl1(),
tkuserapl2() and tkuserapl3(), the identification code can be found in
GENK.INC.

If the identification code is not valid (task not allocated) a fault code will occur
(PROC_RDYTSK,1,id_tsk).

The task in the READYTSK state will be run by the scheduler as soon as possible.

During execution the task is set to the EXECTSK status, and if the status is not varied,
at the end of execution the scheduler will reset it to READYTSK. Thus the task will be
re-run.

RETURN VALUE

The function does not have any return parameters.

SEE ALSO

slptsk()
dlytsk()

159

DS FOR FORMULA 6

EXAMPLE

void apl_restart(void)
{
 nextstep=10;
 rdytsk(PROC_TKAPL);
}

This program runs the application task tkapl() from STEP 10 the first time the
Terminal is switched on.

See also examples in chapter 5.

160

LIBRARY REFERENCE 6

readclock

FUNCTION

Reading of the date/time from the Real Time Clock.

SYNTAX

#include "library.h"
#include "acqdef.h"
void readclock(struct time*destime);

PROTOTYPE IN

library.h

DESCRIPTION

The function readclock() reads the hour, minutes, seconds, day, month and year
from the Real Time Clock chip available in the Terminal, and makes them available in
the output parameter destime, which has the following structure:

struct time
{
 unsigned char year; (0-99)
 unsigned char month; (1-12, 1 = Jan, 2 = Feb, ...)
 unsigned char day; (1-31)
 unsigned char dayofw; (0-6, 0 = Sun, 1 = Mon, ...)
 unsigned char hour; (0-23)
 unsigned char min; (0-59)
 unsigned char sec; (0-59)
 unsigned char ampm; (ignore)
};

RETURN VALUE

The function does not have any return parameters.

161

DS FOR FORMULA 6

NOTES

The programmer does not generally need this function (except if day of week is
needed) as time data is available and updated by the Operating System in string and
numerical format in the following global structures:

extern struct time main_clock;

extern char main_time[DIMTIMEBUF];
extern char main_date[DIMDATEBUF];

SEE ALSO

writeclock()

162

LIBRARY REFERENCE 6

reset_sys

FUNCTION

Restarts the Operating System.

SYNTAX

#include "library.h"
void reset_sys(void);

PROTOTYPE IN

library.h

DESCRIPTION

The function restarts the Operating System and therefore implies quitting the current
program context without returning.

The program resumes execution as if there had been a fresh reset after Terminal
shut-down.

RETURN VALUE

The function does not have any return parameters.

NOTES

It is not generally used by the programmer, but is used by the Operating System
itself, for example in the event of an unrecoverable hardware error.

SEE ALSO

exit_to_bl()
exit_to_rst()

163

DS FOR FORMULA 6

ret_proc

FUNCTION

"dummy" procedure.

SYNTAX

#include "library.h"
void ret_proc(void);

PROTOTYPE IN

library.h

DESCRIPTION

The function ret_proc() does not run any operation. It is used in special situations,
for example for the initialization of function pointers.

RETURN VALUE

The function does not have any return parameters.

164

LIBRARY REFERENCE 6

retrig_psssd

FUNCTION

Restores automatic pen shut-down time.

SYNTAX

#include "library.h"
void retrig_psssd(void);

PROTOTYPE IN

library.h

DESCRIPTION

The function allows resetting of time after which the Terminal automatically switches
off ("power saving self shut-down") to prolong the battery charge.

This function is called automatically when the Operating System indicates an activity
taking place on the Terminal.

RETURN VALUE

The function does not have any return parameters.

NOTES

This function has no effect if called when the Terminal is lodged in its transceiver: in
this case, the timer responsible for the automatic shut-down is inactive to avoid the
Terminal switch off.

SEE ALSO

stop_psssd()

165

DS FOR FORMULA 6

rf_close

FUNCTION

Closes the current radio session for STARGATE™ base stations.

SYNTAX

#include "radio.h"
void rf_close(void);

PROTOTYPE IN

radio.h

DESCRIPTION

This function closes the current radio session for STARGATE™ base stations. It
must be run before a new call to rf_init(), for example to modify the network
configuration.

RETURN VALUE

No return parameters.

NOTES

It is advised not to open and close radio sessions often in order not to waste time
with login procedures.

SEE ALSO

rf_init()

EXAMPLE

See example Workdemo.005.

166

LIBRARY REFERENCE 6

rf_habort

FUNCTION

Forces termination of the current transaction.

SYNTAX

#include "radio.h"
void rf_habort(void);

PROTOTYPE IN

radio.h

DESCRIPTION

This function must be used to force termination of the current transaction. The effect
is the same as a termination due to communication timeout.

RETURN VALUE

No return parameters.

NOTES

A call to rf_habort() may not result in a forced radio communication termination if,
before the abort request takes effect, the protocol has succeeded in correctly
terminating the transaction. Therefore, after an rf_habort() call, and before
invoking an rf_hretry(), check the transaction status with rf_status(). A
transmission retry should only be performed if RF_TOUT is returned, otherwise the
same data will be transmitted twice.

SEE ALSO

rf_hreqst()
rf_status()
rf_hretry()

EXAMPLE

See example Workdemo.005.

167

DS FOR FORMULA 6

rf_hreqst

FUNCTION

Transaction activation request.

SYNTAX

#include "radio.h"
RF_ERR rf_hreqst(unsigned char *txbuf, unsigned short

txlen, RF_TRANS_MODE mode, unsigned
short timeout);

PROTOTYPE IN

radio.h

DESCRIPTION

This function begins a transaction, that is, it starts the RF communication handler.

This function must be called only if the previous transaction has terminated (see
rf_status()).

The input parameter *txbuf is a pointer to the transmission buffer.

The parameter txlen specifies the number of bytes to transmit; this value can range
between RF_MIN_TX_LEN and RF_MAX_TX_LEN.

The parameter mode specifies the transaction type:

RF_ONE_WAY performs only transmission of data contained in txbuf;

RF_TWO_WAYS performs transmission of data contained in txbuf and receives
the possible response. To read the received data use rf_read().

The parameter timeout specifies the maximum duration of the transaction in
seconds. If the transaction isn’t terminated before the timeout expires, the
communication is forced to a halt. It is suggested to use values ranging from 3 to 10
seconds, depending on the traffic load and on the dimension of the data packets
exchanged.

168

LIBRARY REFERENCE 6

RETURN VALUE

Possible return values:

RF_GOOD transaction started
RF_BAD wrong input parameters
RF_BUSY there is already an active transaction; it is necessary to wait for its

termination.
RF_FAIL it isn’t possible to start a transaction, probably no session was opened

with rf_init().

NOTES

If the transaction terminates due to timeout, it is necessary to use the
function rf_hretry() to carry out a new transaction.

SEE ALSO

rf_habort()
rf_status()
rf_hretry()
rf_read()

EXAMPLE

See example Workdemo.005.

169

DS FOR FORMULA 6

rf_hretry

FUNCTION

Requests a transaction retry. To be used if the previous transaction
failed due to timeout.

SYNTAX

#include "radio.h"
RF_ERR rf_hretry(unsigned short timeout);

PROTOTYPE IN

radio.h

DESCRIPTION

The function rf_hretry() must be used when a radio transaction requested
through rf_hreqst() failed due to timeout.

A new timeout must be specified as an input parameter.

Following a transaction timeout, it is mandatory to use this function in order to
guarantee integrity between the data transmitted by the Terminal and the data
received by STARGATE™. After a transaction fail due to timeout, if a new
rf_hreqst() is issued using the same data, STARGATE™ could receive
duplicated data.

RETURN VALUE

Possible return values are:

RF_GOOD the new transaction try has been started
RF_FAIL it isn’t possible to start a transaction, probably no session was opened

with rf_init().

NOTES

Should the new transaction fails again due to timeout, it is necessary to call
rf_hretry() another time, specifying a longer timeout value.

170

LIBRARY REFERENCE 6

If repeated fails are experienced, it is suggested to stop the communication attempts.
This will avoid wasting battery power and tying up the radio channel. It is suggested
to close the session through rf_close() and to investigate the cause of the
problem.

SEE ALSO

rf_status()
rf_hreqst()
rf_habort()

EXAMPLE

See example Workdemo.005.

171

DS FOR FORMULA 6

rf_init

FUNCTION

Opens a new radio session for STARGATE™ base stations.

SYNTAX

#include "radio.h"
#include "iogenk.inc"
RF_ERR rf_init(RF_CFG *rf_config);

PROTOTYPE IN

radio.h

DESCRIPTION

This function allows opening a new radio session for STARGATE™ base stations,
that is, to set the parameters relevant for the RF communication and to initialize the
Terminal so that a correct login onto the radio network can be made.

A pointer to an RF_CFG structure is passed on input to the function:

typedef struct {
 unsigned short address;
 unsigned short first_stargate;
 unsigned short last_stargate;
 unsigned char baud_rate;
 unsigned short active_devices;
 unsigned short reserved;
} RF_CFG;

The field .address must contain the Terminal identification address that will be
used for the network login. Different Terminals in the same radio network must have
different addresses. The values available for an address range from
RF_MIN_TERM_ADD to RF_MAX_TERM_ADD.

The field .first_stargate specifies the lowest value for the STARGATE™
address range with which the transaction can be carried out. The minimum value that
can be specified is RF_MIN_STAR_ADD.

172

LIBRARY REFERENCE 6

The field .last_stargate specifies the highest value for the STARGATE™
address range with which the transaction can be carried out. The maximum value
that can be specified is RF_MAX_STAR_ADD.

The protocol automatically manages handover between base stations whose
addresses have been specified through the previous two parameters.

To correctly use the radio system it is necessary that the STARGATE™ base
stations have consecutive addresses and that the parameters .first_stargate
and .last_stargate exactly identify the entire active base station set. This way,
the Terminal will not waste time trying to communicate with non existing base
stations.

The field .baud_rate specifies the communication speed. This parameter must be
set to B19200 (except for the F660 standard version terminal which requires B9600).

The field .active_devices specifies the maximum number of Terminals that can
communicate simultaneously in the same radio space. For maximum network
efficiency, this parameter should be set as close as possible to the number of
devices actually used to communicate in the same radio space.

The field .reserved must contain the value 0 and is reserved for future
development.

RETURN VALUE

Possible return values:

RF_GOOD protocol correctly initialized.
RF_BAD wrong configuration parameters.

NOTES

In order to change some of the parameters (for example, the Terminal address) it is
necessary to close the current session through rf_close() before a new call to
rf_init().

SEE ALSO

rf_close()

EXAMPLE

See example Workdemo.005.

173

DS FOR FORMULA 6

rf_read

FUNCTION

Reads received data.

SYNTAX

#include "radio.h"
unsigned short rf_read(unsigned char *rxbuf, unsigned

short rxlen);

PROTOTYPE IN

radio.h

DESCRIPTION

This function can be used to read the received data after a Two Way transaction has
been correctly terminated.

The parameter *rxbuf is a pointer to a buffer where the received data will be copied.

The parameter rxlen must contain the buffer dimension; the maximum number of
bytes to be copied into rxbuf. Any received bytes exceeding rxlen will not be
copied. Every transaction allows reception of a maximum of RF_MAX_RX_LEN bytes.

RETURN VALUE

The function returns the number of bytes actually copied into the buffer.

NOTES

Received data are available only when the transaction is correctly terminated and will
be deleted at the next transaction activation request.

SEE ALSO

rf_status()

EXAMPLE

See example Workdemo.005.

174

LIBRARY REFERENCE 6

rf_stargate

FUNCTION

Requests the STARGATE™ address involved in the last
transaction.

SYNTAX

#include "radio.h"
unsigned short rf_stargate(void);

PROTOTYPE IN

radio.h

DESCRIPTION

This function returns the address of the STARGATE™ RF base station involved in
the last terminated radio transaction.

RETURN VALUE

STARGATE™ RF base station address.

NOTES

The value returned is meaningful only if a radio transaction has just been terminated.

If the transaction terminated correctly, the value returned is that of the STARGATE™
that actually communicated with the terminal.

If the transaction terminated wrongly, the value returned is that of the last
STARGATE™ with which the terminal tried to communicate.

SEE ALSO

rf_init()
rf_request()

EXAMPLE

See example Workdemo.005.

175

DS FOR FORMULA 6

rf_status

FUNCTION

Current transaction status request.

SYNTAX

#include "radio.h"
RF_STATUS_TYPE rf_status(void);

PROTOTYPE IN

radio.h

DESCRIPTION

This function is used to request the status of the current radio transaction.

RETURN VALUE

The function returns a value of type RF_STATUS_TYPE.

typedef enum {
 RF_OK
 RF_ERROR
 RF_TOUT
 RF_RUNNING
} RF_STATUS_TYPE;

The value RF_OK means that the transaction has successfully terminated.

The value RF_ERROR means that the transaction has wrongly terminated.

The value RF_TOUT means that the transaction has terminated due to timeout or
through a call to rf_habort().

The value RF_RUNNING means that the transaction is still active, so it is necessary to
wait for its termination.

EXAMPLE

See example Workdemo.005.

176

LIBRARY REFERENCE 6

rf_version

FUNCTION

Protocol and HDLRF.LIB library version request.

SYNTAX

#include "radio.h"
void rf_version(RF_VERSION *version);

PROTOTYPE IN

radio.h

DESCRIPTION

This function outputs an RF_VERSION structure containing the protocol and the
HDLRF.LIB library versions in string format.

typedef struct {
 unsigned char[9] protocol; /* Protocol Version */
 unsigned char[9] library; /* Library Version */
} RF_VERSION;

The field .protocol will contain the protocol version in the format “Vxx.yy”.

The field .library will contain the HDLRF.LIB library version in the format “Vxx.yy”.

RETURN VALUE

No return values.

177

DS FOR FORMULA 6

ring

FUNCTION

Emission of acoustic signals (beeps) by buzzer.

SYNTAX

#include "library.h"
#include "genk.inc"
void ring(unsigned char note, unsigned char duration,

unsigned char repetitions);

PROTOTYPE IN

library.h

DESCRIPTION

The function emits a frequency tone of a certain duration reapeated for a number of
times. Tone, duration and number of times are established respectively through the
input parameters: note, duration, repetitions.

If the repetitions parameter is greater than 1, the time interval between one tone
and the other is fixed.

The parameter note can assume the following values, ranging from MIN_RN to
MAX_RN:

C4_RN
D4_RN
E4_RN
F4_RN
G4_RN
A4_RN
B4_RN
C5_RN
D5_RN
E5_RN
F5_RN
G5_RN
A5_RN
B5_RN
C6_RN
D6_RN

178

LIBRARY REFERENCE 6

The parameter duration can assume the following values:

MIN_RD (1 ms)
VERY_SHORT_RD (10 ms)
SHORT_RD (20 ms)
MEDIUM_RD (50 ms)
LONG_RD (80 ms)
VERY_LONG_RD (100 ms)
MAX_RD (120 ms)

The maximum value for the parameter duration is 120 (MAX_RD). Each unit equals
1 ms.

The parameter repetitions can vary from 1 to 255.

NOTES

The tone is emitted by a piezoelectric buzzer. While the tone is emitted, all other
processes (scheduler, tasks, drivers, interrupts) are not executed. If the parameter
repetitions is greater than 1, the intervals between one acoustic emission and
another do not cause hanging of the Operating System because they are obtained
via a software timer.

The ring() procedure is therefore entirely concurrent with the Operating System.

RETURN VALUE

The function does not have any return parameters.

SEE ALSO

GENK.INC.

179

DS FOR FORMULA 6

EXAMPLE

void tkuserapl1(void)
 {
 .
 .
 STEP SEQUENCE1:
 ring(C5_RN, VERY_SHORT_RD, 1);
 nextstep = SEQUENCE2;
 dlystk(PROC_TKUSERAPL1, 1 SECOND);
 ENDOFSTEP;

 STEP SEQUENCE2:
 ring(D5_RN, SHORT_RD, 1);
 nextstep = SEQUENCE3;
 dlystk(PROC_TKUSERAPL1, 1 SECOND);
 ENDOFSTEP;

 STEP SEQUENCE3:
 ring(E6_RN, MEDIUM_RD, 1);
 nextstep = SEQUENCE4;
 dlystk(PROC_TKUSERAPL1, 1 SECOND);
 ENDOFSTEP;

 STEP SEQUENCE4:
 ring(44, LONG_RD, 1);
 nextstep = SEQUENCE;
 slpstk(PROC_TKUSERAPL1);
 ENDOFSTEP;
 .
 .
}

Emission of a close set sequence of 4 acoustic signals of different frequencies and
different durations.

See also examples in chapter 5.

180

LIBRARY REFERENCE 6

rp_previousbank

FUNCTION

Restores the bank in use before the sv_currentbank().

SYNTAX

#include "library.h"
void rp_previousbank(void);

PROTOTYPE IN

library.h

DESCRIPTION

The function must be called when you have finished using the bank set through
bankset(), to restore the memory bank in use when calling sv_currentbank()
and to correctly manage the stack.

RETURN VALUE

The function does not have any return parameters.

NOTES

The functions sv_currentbank(), rp_previousbank() and bankset() must
be called inside the same function for a correct use of the stacked memory.
Otherwise, the program won’t be able to restore the correct bank and could lose
control.

SEE ALSO

bankset()
sv_currentbank()

EXAMPLE

See examples in chapter 5.

181

DS FOR FORMULA 6

rqstsk

FUNCTION

Request to allocate a task

SYNTAX

#include "library.h"
unsigned char rqstsk(unsigned char priority, void(code

*pt_tsk)(void));

PROTOTYPE IN

library.h.

DESCRIPTION

The function allocates a task associating to it the numerical identifier passed in the
input parameter priority. This identifier coincides with the order of execution in
the scheduling process.

The numerical identifiers for the pre-allocated tasks are declared in the module
GENK.INC.

The new allocated tasks should be declared with identifiers that are consecutive and
greater than the pre-defined ones (that is, starting from 13).

The pt_tsk parameter is the pointer to the task function, which cannot have
parameters.

RETURN VALUE

The input parameter priority.

182

LIBRARY REFERENCE 6

rqtim

FUNCTION

Timer allocation request.

SYNTAX

#include "library.h"
unsigned char rqtim(void(*ext_endtim_proc)(void));

PROTOTYPE IN

library.h

DESCRIPTION

The input parameter is the pointer to the function (for example: end_tim_xxx())
that must be called when the timer expires; use NOENDTIMCALL if no call is required.

RETURN VALUE

The procedure returns the identification code of the timer, used for the subsequent
references to the timer itself. The code can range from 0 to 29 (the constant
N_MAX_TIMERS, which corresponds to 30, is available).

SEE ALSO

wrtim()
rdtimst()
rdtimc()

183

DS FOR FORMULA 6

EXAMPLE

include "library.h"
include "genk.inc"
 unsigned char idt_bell;
void endtim_bell(void)
{
 wrtim(idt_bell, IDLETIM, 0);
 printf("\a");
}
void apl_startup(void)
{
 idt_bell = rqtim(endtim_bell);
}

This example shows how to request a timer (typically at system startup, i.e. first
power-on) and how to declare the procedure associated with the end of the timer,
which runs the required operation when the time expires (see the wrtim()
example).

184

LIBRARY REFERENCE 6

rx1_hreqst

FUNCTION

Frame reception request through serial communication line
(HDLCOM10.LIB)

SYNTAX

#include "acqk.inc"
#include "acqdef.h"
#include "library.h"
void rx1_hreqst(struct rtx1_hreqst_message rx_hr_msg);

PROTOTYPE IN

library.h

DESCRIPTION

Request a frame with the following format from the reception communication handler
via serial line:

Meaning INFORMATION EOT

Valid range 0-255 (eot excluded) .eot

Field dimension NMaxChRx 1

The parameter rx_hr_msg has the following format:

struct rtx1_hreqst_message
{
 unsigned char len;
 unsigned char *datap;
 unsigned char eot;
 unsigned char protc;
};

The parameter .len defines the maximum number of characters receivable in the
INFORMATION field.

The parameter .*datap is not used.

185

DS FOR FORMULA 6

The parameter .eot defines the character that identifies the end of the reception
frame.

The parameter .protc can assume the following value:

PROTDEFAUL Activation of protocol in RS-232 connection.

The handler autonomously handles reception from the serial line checking the end of
the frame according to the .eot and programmed length, and sends a message both
when the message is correct and when it is wrong.

The process must be terminated with the procedure rx_habort().

The handler allows simultaneous frame transmission and reception (full-duplex) if the
transceiver connection is RS-232.

When the transmission is active in Xon/Xoff mode, reception of a frame via
rx1_hreqst() is not possible.

In RS-485 transmission mode the handler autonomously activates the Terminal
direction control LED to switch the reception line to transmission and vice versa in
the transceiver, so the communication can only be half-duplex.

The RS-485 transmission mode is only activated in the transmission handler
invocation.

The handler conveys the result of the reception process of a frame (generally defined
acquisition process) via a single global structure.

extern struct rx_hanswr_message rx_answer;
struct rx_hanswr_message
{
 unsigned char stat;
 unsigned char len;
 unsigned char errorc;
 unsigned datab[DimRxDataB];
};

The parameter .stat indicates the status of the acquisition, can only be read and
may assume the following values:

ACQDIS disabled acquisition;
ACQEND acquisition cycle complete;
ACQBEG acquisition cycle started but not completed;
ACQNOV error for formally invalid data.

186

LIBRARY REFERENCE 6

The parameter .len expresses the length of the data contained in the .datab[]
buffer.

When .stat assumes the value ACQNOV, the parameter .errorc expresses the
following values:

NoError no error;
DrvLevPartyErr parity error at driver level;
RxDataBOvrflw number of characters received excessive.

RETURN VALUE

The function does not have any return parameters.

The handler parameters are contained in the global structure:

extern struct rx_hanswer_message rx_answer;

SEE ALSO

rx_habort()
tx1_hreqst()
tx_habort()

187

DS FOR FORMULA 6

rx2_habort

FUNCTION

Disables reception

SYNTAX

#include "library.h"
void rx2_habort (void);

PROTOTYPE IN

library.h

DESCRIPTION

Disables reception.

To re-enable reception it is necessary to use the rx2_hreqst() function.

RETURN VALUE

The function does not have any return parameters.

SEE ALSO

rx2_hreqst()
tx2_hreqst()
tx2_habort()
getcomerror()
rxchcom()
txchcom()
setcom()

EXAMPLE

See example Workdemo.003.

188

LIBRARY REFERENCE 6

rx2_hreqst

FUNCTION

Enables reception and cancels any parity errors.

SYNTAX

#include "library.h"
void rx2_hreqst(void);

PROTOTYPE IN

library.h

DESCRIPTION

Enables reception and cancels any parity errors.

This function must be entered before beginning communication or when the Terminal
is entered into the transceiver-charger (insertion event).

When rx2_habort() is executed, reception is disabled.

This function can be invoked along with the tx2_hreqst().

When a valid character is received, the rxchcom() interrupt service routine is invoked.

RETURN VALUE

The function does not have any return parameters.

SEE ALSO

rx2_habort()
tx2_habort()
tx2_hreqst()
rxchcom()
txchcom()
getcomerror()
setcom()

189

DS FOR FORMULA 6

EXAMPLE

/* Example of the use of reception interrupt */
/* In this example the CR (0x0D) characters are counted */
.
.
void rxchcom (unsigned char character)
{
 if (character==0x0D)
 rdytsk (PROC_TKAPL);

}
 .
 .
void tkapl (void)
{
 switch (nextstep)
 {
 .
 .
 STEP PREPARE_SERIAL_COMMUNICATION:
 rx2_hreqst ();
 slptsk (PROC_TKAPL);
 nextstep = ADD_CR_COUNTER;
 ENDOFSTEP;
 STEPADD_CR_COUNTER;
 cr_counter++;
 slptsk (PROC_TKAPL);
 ENDOFSTEP;
 .
 .
 } // end of switch
}

See also example Workdemo.003.

190

LIBRARY REFERENCE 6

rx_habort

FUNCTION

Frame reception conclusion through serial communication line.

SYNTAX

#include "library.h"
void rx_habort(void);

PROTOTYPE IN

library.h

DESCRIPTION

Communication of conclusion of reception of one frame to serial communication
handler.

The call is indispensable in all those cases of reception interruption or conclusion, for
example in the case of removal of the Terminal from the transceiver or shut-down.

Following the rx_habort() the predefined global structure extern struct
rx_hanswr_message rx_answer is initialized and the parameter .stat assumes
the value:

ACQDIS acquisition disable.

RETURN VALUE

The function does not have any return parameters.

SEE ALSO

rx_hreqs()
tx_hreqst()
tx_habort()

EXAMPLE

See example Workdemo.002.

191

DS FOR FORMULA 6

rx_hreqst

FUNCTION

Frame reception request through serial communication line
(HDLCOM00.LIB).

SYNTAX

#include "acqk.inc"
#include "acqdef.h"
#include "library.h"
void rx_hreqst(struct rtx_hreqst_message rx_hr_msg);

PROTOTYPE IN

library.h

DESCRIPTION

Request a frame with the following format from the reception communication handler
via serial line:

Meaning STX ST. ADDR INFORMATION EOT

Valid range 02 01-99 16-255 13

Field dimension 1 1 NMaxChRx 1

The parameter rx_hr_msg has the following format:

struct rtx_hreqst_message
{
 unsigned char len;
 unsigned char *datap;
 unsigned char st_addr;
 unsigned char protc;
};

The parameter .len defines the maximum number of characters receivable in the
INFORMATION field.

The parameter .*datap is not used.

The parameter .st_addr defines the station address that identifies the Terminal.

192

LIBRARY REFERENCE 6

The parameter .protc can assume the following two values:

PROTDEFAUL Activation of protocol in RS-232 connection.

The handler autonomously handles control of the frame (if the station address
received corresponds to the programmed one), and sends a message both when the
message is correct and when it is wrong. The process must be terminated with the
procedure rx_habort().

The handler allows simultaneous frame transmission and reception (full-duplex)
when transceiver connection is RS-232.

In RS-485 transmission mode the handler autonomously activates the Terminal
direction control LED to switch the reception line to transmission and vice versa in
the transceiver, so the communication can only be half-duplex.

The RS-485 transmission mode is only activated in the transmission handler
invocation.

The handler conveys the result of the reception process of a frame (generally defined
acquisition process) via a single global structure.

extern struct rx_hanswer_message rx_answer;
struct rx_hanswer_message
{
 unsigned char stat;
 unsigned char len;
 unsigned char errorc;
 unsigned datab[DimRxDataB];
};

The parameter .stat indicates the status of the acquisition, can only be read and
may assume the following values:

ACQDIS disabled acquisition;
ACQEND acquisition cycle complete;
ACQBEG acquisition cycle started but not completed;
ACQNOV error for formally invalid data.

The parameter .len expresses the length of the data contained in the .datab[]
buffer.

193

DS FOR FORMULA 6

When .stat assumes the value ACQNOV, the parameter .errorc expresses the
following values:

NoError no error;
DrvLevPartyErr parity error at driver level;
RxDataBOvrflw number of characters received excessive;
RxDataErr INFORMATION field characters out of set range.

RETURN VALUE

The function does not have any return parameters.

The handler parameters are contained in the global structure:

extern struct rx_hanswer_message rx_answer;

SEE ALSO

rx_habort()
tx_hreqst()
tx_habort()

194

LIBRARY REFERENCE 6

serial_number

FUNCTION

This function returns the terminal’s Serial Number

SYNTAX

#include "library.h"
unsigned char *serial_number(void);

PROTOTYPE IN

library.h

DESCRIPTION

The function returns a pointer to a null terminated string containing the Terminal’s
Serial Number; maximum number of characters in the string is 12 (termination not
included).

RETURN VALUE

Pointer to a string containing the Terminal’s Serial Number.

NOTES

This is a dummy function for F660 terminals.

SEE ALSO

terminal_name()

195

DS FOR FORMULA 6

set_display_tab_offset

FUNCTION

Set of an offset in the font character table.

SYNTAX

#include "library.h"
void set_display_tab_offset(unsigned int);

PROTOTYPE IN

library.h

DESCRIPTION

This function generates a displacement when accessing the font character table
through functions like putchar(), printf(), puts(), so that it is possible to use
character tables with more than 224 symbols (the first 32 ASCII codes aren’t counted
because they can’t be displayed).

Remembering that the character table must be contained in the array display_tab,
the actual character displayed when passing a code to one of the above mentioned
functions is the one corresponding to the display_tab row number:

code – 32 + offset

RETURN VALUE

The function does not have any return parameters.

NOTES

No checks are performed against the characters actually defined in the font table.
Display of unexpected codes is unpredictable.

SEE ALSO

putchar()

196

LIBRARY REFERENCE 6

EXAMPLE

Suppose you have expanded your table to contain bold and italic characters in
addition to the normal ones (to define your own character table, see par. 3.8).

Remembering that only 224 of the 256 ASCII codes available can be displayed, the
structure of display_tab could be :

- rows 0 to 223 contain the normal font;
- rows 224 to 447 contain the bold font;
- rows 448 to 671 contain the italics font.

The following piece of code implements functions which permit switching between
fonts:

#include "library.h"
.
.
void select_normal_font(void)
{
 set_display_tab_offset(0); // select first page of 224
characters
}

void select_bold_font(void)
{
 set_display_tab_offset(224); //select second page of 224
characters
}

void select_cursive_font(void)
{
 set_display_tab_offset(448); // select third page of 224
caracters
}

197

DS FOR FORMULA 6

set_psssd_time

FUNCTION

Definition of automatic Terminal shut-down time.

SYNTAX

#include "library.h"
#include "genk.inc"
void set_psssd_time(unsigned int psssd_time);

PROTOTYPE IN

library.h

DESCRIPTION

This function allows you to restore the time after which the Terminal automatically
shuts off (power saving self shut-down) to prolong the battery charge.

This function takes effect upon the next call of the function retrig_psssd().

The shut-down time is specified by the parameter psssd_time through the same
constants used to specify the time in the timers handling procedures and predefined
in the file GENK_INC.

The self shut-down time is configured by default according to the value T_PSSSD.

RETURN VALUE

The function does not have any return parameters.

NOTES

The self shut-down time must be reduced as much as possible because it affects
Terminal autonomy as explained in paragraph 4.1.1 "Power Saving Self Shut-Down".

198

LIBRARY REFERENCE 6

SEE ALSO

retrig_psssd()
stop_psssd()

See also paragraph 3.6.

EXAMPLE

void apl_startup(void)
{
.
.
 set_psssd_time(10 SECONDS);
.
.
}

In this example the self shut-down time is defined with a value of 10 seconds.

199

DS FOR FORMULA 6

setcom

FUNCTION

Setting of serial communication parameters.

SYNTAX

#include "library.h"
#include "iogenk.inc"
unsigned char setcom(unsigned char baudrate, unsigned

char parity, unsigned char
databits);

PROTOTYPE IN

library.h

DESCRIPTION

The function setcom() allows you to set the parameters for baudrate, parity and
number of bits per character of the serial communication according to the following
possibilities:

baudrate
B300 300 baud
B600 600 baud
B1200 1200 baud
B2400 2400 baud
B4800 4800 baud
B9600 9600 baud
B19200 19200 baud
B28800 28800 baud
B38400 38400 baud
B57600 57600 baud
DEFBAUD B9600 Default Baudrate

parity
PODD odd parity
PEVEN even parity
PMARK mark
PSPACE space
PNONE no parity
DEFPARITY PEVEN Default Parity

200

LIBRARY REFERENCE 6

databits
X7BITS 7 data bits
X8BITS 8 data bits
DEFBITS X7BITS Default Databits

The communication must be deactivated when setcom() is called.

RETURN VALUE

OK indicates correct parameters and set-up operation performed;
NOK indicates incorrect parameters and set-up operation not performed

NOTES

The serial communication parameters are set by the Operating System on start-up of
the values DEFBAUD, DEFPARITY, DEFBITS.

In the event of Terminal restart, the Operating System restores the parameters set
with the setcom() function back to the values of the last set-up.

Remember that when using the libraries HDLCOM00.LIB and HDLCOM10.LIB, the
maximum configurable communication speed is 19200 baud, while HDLCOM20.LIB
allows up to 57600 baud configuration.

SEE ALSO

rxh_rqst()
txh_rqst()

EXAMPLE

void apl_startup(void)
{
 if(setcom(DEFBAUD, DEFPARITY, X8BITS) ==NOK)
 fault(proc_tkapl, 0, 0);
} /* end apl_startup() */

See also the examples in chapter 5.

201

DS FOR FORMULA 6

setwakeup

FUNCTION

This function allows the auto wake up of the Formula Terminal
when it is out of the transceiver and without pressing the SCAN
key.

SYNTAX

#include "library.h"
#include "acqdef.h"
#include "genk.inc"
void setwakeup(struct time settingtime, unsigned char

settingtype);

PROTOTYPE IN

library.h.

DESCRIPTION

The function setwakeup() predisposes the clock of the Terminal for the auto wake
up when the Terminal is out of the transceiver or in shut-down.

The settingtime parameter has the following structure:

struct time
{
 unsigned char year; (0-99)
 unsigned char month; (1-12, 1 = Jan, 2 = Feb, ...)
 unsigned char day; (1-31)
 unsigned char dayofw; (0-6, 0 = Sun, 1 = Mon, ...)
 unsigned char hour; (0-23)
 unsigned char min; (0-59)
 unsigned char sec; (0-59)
 unsigned char ampm; (ignore)
};

202

LIBRARY REFERENCE 6

The settingtype parameter sets up the mode of auto wake up and has the
following values:
D_set sets the clock to a particular day, month, year, hour, minute, second;
T_set sets the clock to a particular hour, minute and second; day, month and year

aren't considered but must have permitted values.
W_set sets the clock to a particular hour, minute and second of a particular day of

the week; day, month and year aren't considered but must have permitted
values.

N_set no setting.

RETURN VALUE

The function does not have any return parameters.

NOTES

This is a dummy function if using the library HDLCKNWU.LIB (for F660-E, F660 and
F630 terminals).

SEE ALSO

checkwakeup()

EXAMPLE

#include "library.h"
#include "acqdef.inc"
#include "genk.inc"
struct time wkp_time;
.
.
void wakeup (void)
{
 // Set up daily wake-up at 15:30:00
 wkp_time.year=00;
 wkp_time.month=01;
 wkp_time.day=20;
 wkp_time.dayofw=0;
 wkp_time.hour=15;
 wkp_time.min=30;
 wkp_time.sec=00;
 setwakeup (wkp_time, T_set);
}

203

DS FOR FORMULA 6

slptsk

FUNCTION

Sets the task specified to the SLEEPTSK status.

SYNTAX

#include "library.h"
#include "genk.inc"
void slptsk(unsigned char id_tsk);

PROTOTYPE IN

library.h.

DESCRIPTION

The task is specified by means of its own identification code via parameter id_tsk.

For the predefined user application tasks tkapl(), tkuserapl1(),
tkuserapl2() and tkuserapl3(), the identification code can be found in
GENK.INC.

If the identification code is not valid (task not allocated) a fault code will occur
(PROC_SLPTSK, 1, id_tsk).

After slptsk, the task will no longer be run by the scheduler.

RETURN VALUE

The function does not have any return parameters.

NOTES

Don’t use this function with Operating System tasks. Use this function with user
defined tasks or, of the predefined tasks, only with the user application ones:
tkapl(), tkuserapl1(), tkuserapl2() and tkuserapl3().

SEE ALSO

rdytsk()
dlytsk()

204

LIBRARY REFERENCE 6

EXAMPLE

void insertion_event(void)
{
 slptsk(PROC_TKAPL);
}

When the Terminal is inserted, this program suspends the task tkapl().

See also the examples in chapter 5.

205

DS FOR FORMULA 6

statsk

FUNCTION

Reads the status of the specified task.

SYNTAX

#include "library.h"
unsigned char statsk(unsigned char id_tsk);

PROTOTYPE IN

library.h.

DESCRIPTION

The function returns the task status specified in the id_tsk parameter.

RETURN VALUE

The status of the task may assume the following values:

INITSK status of task at system initialization
SLEEPTSK sleep status, task not executed
READYTSK ready status, task executed as soon as possible
DELAYTSK delay status, task executed after delay
EXECTSK execution status, task executed by scheduler.

SEE ALSO

rdytsk()
slptsk()
dlytsk()

206

LIBRARY REFERENCE 6

stop_psssd

FUNCTION

Suspension of automatic pen shut-down.

SYNTAX

#include "library.h"
void stop_psssd(void);

PROTOTYPE IN

library.h

DESCRIPTION

The function suspends the mechanism that automatically switches off the Terminal
(power saving self shut-down), which remains on indefinitely.

This function is automatically called, for example, when the Terminal is placed in its
transceiver.

RETURN VALUE

The function does not have any return parameters.

NOTES

Suspension of automatic self shut-down may be dangerous to battery life and
therefore to maintenance of data: it is therefore preferable not to use it.

207

DS FOR FORMULA 6

sv_currentbank

FUNCTION

Saves the bank in use before calling bankset().

SYNTAX

#include "library.h"
void sv_currentbank(void);

PROTOTYPE IN

library.h

DESCRIPTION

The function must be called before changing (through bankset()) the bank
currently used. The information about the current bank is saved in the Operating
System internal stack. When you have finished using the bank newly set through
bankset(), rp_previousbank() must be called.

RETURN VALUE

The function does not have any return parameters.

NOTES

The functions sv_currentbank(), rp_previousbank() and bankset() must
be called inside the same function for a correct use of the stacked memory.
Otherwise, the program won’t be able to restore the correct bank and could lose
control.

SEE ALSO

bankset()
rp_previousbank()

EXAMPLE

See examples in chapter 5.

208

LIBRARY REFERENCE 6

symblg

FUNCTION

Enabling and disabling of symbology decoding.

SYNTAX

#include "library.h"
#include "acqk.inc"
void symblg(bit operation, unsigned char sy_select);

PROTOTYPE IN

library.h

DESCRIPTION

The function enables (operation = SY_ENABLE) or disables (operation =
SY_DISBLE) decoding of the symbologies specified below. As an exception,
SY_39STD cannot be disabled with this function.

Symbologies can be divided in two levels:

First level Second level
SY_39STD Standard 3/9 family
 SY_EXTENDED39 3/9 extended
 SY_PHRMCTLI Italian pharmaceutical
 SY_PHRMCTLF French pharmaceutical (CIP)
SY_INT25 Interleaved 2/5 family
 SY_ITF14 ITF14 (13-digit Interleaved 2/5

plus check digit) with first
character ‘0’ suppressed.

 SY_ITF14STD ITF14 Standard (14-digit
Interleaved 2/5) with no limitations

SY_IND25 Industrial 2/5 family
SY_MATRIX25 Matrix 2/5 family
SY_MONARCH Monarch 2/7 family
SY_NW7 NW7(Codabar)
SY_PAKO Pako
SY_DAIBM Delta A IBM family
SY_MSI MSI family
SY_CODE128 Code 128 and EAN128
SY_CODEEAN128 Code EAN128
SY_CODE93 Code 93 family

209

DS FOR FORMULA 6

First level Second level
SY_ZELLWEGER Zellweger family
SY_STECH Code Storage Tek
SY_UPC_EAN UPC/EAN family (UPC-B and

UPC-E Version 1 included only if
explicitly enabled; UPC-E
represented as UPC-A)

 SY_UPC_ONLY UPC only (UPC-B and UPC-E
Version 1 included only if explicitly
enabled; UPC-E represented as
UPC-A)

 SY_UPCA_EAN13 UPC-A (UPC-B included only if
explicitly enabled); EAN-13

 SY_EAN8_ONLY EAN-8 only
 SY_UPCE_ONLY UPC-E only (UPC-E Version 1

included only if explicitly enabled;
UPC-E represented as UPC-A)

 SY_UPCB UPC-B (11 digits) that is: 12 digits
UPC-A with first character ‘4’
suppressed

 SY_UPCE_SYS1 UPC-E Version 1
 SY_UPCE0SUP UPC-E with ‘0’ suppressed (6

digits)
 SY_UPCE0SUPCH8 UPC-E with ‘0’ suppressed, plus

first system number character (‘0’
or ‘1’) and last check digit (8
digits)

 SY_UPCACH13 UPC-A and UPC-E represented
as UPC-A with initial ‘0’ (13 digits).

 SY_UPC_EAN_2D UPC/EAN + Add-On 2 only
 SY_UPC_EAN_5D UPC/EAN + Add-On 5 only

Rules for enabling and disabling:
- enabling a first level symbology doesn’t enable the related second level

symbologies.
- enabling a second level symbology enables the related first level symbology.
- disabling a first level symbology disables also the related second level

symbologies.
- disabling a second level symbology doesn’t disable the related first level

symbology.
- enabling SY_ITF14 requires the checksum control to be enabled and therefore

also required for SY_INT25;

210

LIBRARY REFERENCE 6

- enabling or disabling one of the three: SY_MONARCH, SY_NW7, SY_PAKO, results
in enabling or disabling also the remaining two.

- SY_CODE128 and SY_CODEEAN128 are mutually exclusive (only one can be
enabled at a time);

- SY_UPC_ONLY, SY_UPCA_EAN13, SY_EAN8_ONLY and SY_UPCE_ONLY are
mutually exclusive;

- SY_UPCE0SUP and SY_UPCE0SUPCH8 are mutually exclusive;
- SY_UPC_EAN_2D and SY_UPC_EAN_5D are mutually exclusive;
- enabling SY_UPCB is effective only if SY_EAN8_ONLY, SY_UPCE_ONLY and

SY_UPCACH13 are disabled;
- enabling SY_UPCESYS1, SY_UPCE0SUP, SY_UPCE0SUPCH8, is effective only if

SY_UPCA_EAN13 and SY_EAN8_ONLY are disabled;
- enabling SY_UPCACH13 is effective only if SY_EAN8_ONLY, SY_UPCE0SUP and

SY_UPCE0SUPCH8 are disabled;

SY_DEFAULT is defined as SY_39STD.

RETURN VALUE

The function does not have any return parameters.

NOTES

All the symbologies are disabled at startup except for SY_39STD, which is necessary
to read the Barcode Keypad set. For reasons of decoding speed, enable as few
symbologies as possible simultaneously. Note that all UPC-EAN family and ITF14
symbologies will require the checksum control to be enabled.

SEE ALSO

dis_allsymblg()
symblgchksm()

EXAMPLE

void apl_startup(void)
{
 symblg(sy_enable, SY_39STD);
 symblg(sy_disble, SY_DAIBM);
 symblg(sy_enable, SY_MSI);
} /* end apl_startup() */

See also Workdemo examples.

211

DS FOR FORMULA 6

symblgchksm

FUNCTION

Enabling and disabling of checksum control of the symbols
decoded.

SYNTAX

#include "acqk.inc"
#include "library.h"
void symblgchksm(bit operation, unsigned char

sy_select);

PROTOTYPE IN

library.h

DESCRIPTION

The function enables (operation = SY_ENABLE) or disables (operation =
SY_DISBLE) the checksum control of the symbols specified below:

SY_39STD Standard 3/9 family
SY_INT25 Interleaved 2/5 family
SY_MATRIX25 Matrix 2/5 family
SY_MONARCH Monarch (Codabar) 2/7 family
SY_NW7 NW7 (Codabar) 2/7 family
SY_DAIBM Delta A IBM family
SY_MSI MSI family
SY_UPC_EAN UPC/EAN family

RETURN VALUE

The function does not have any return parameters.

NOTES

All checksum controls are disabled at startup. Note that all UPC-EAN family and
ITF14 symbologies will require the checksum control to be enabled.

212

LIBRARY REFERENCE 6

SEE ALSO

dis_allsymblg()
symblg()

EXAMPLE

void apl_startup(void)
{
 symblgchksm(SY_ENABLE, SY_39STD);
 symblgchksm(SY_ENABLE, SY_DAIBM);
 symblgchksm(SY_ENABLE, SY_MSI);
} /* end apl_startup() */

See also examples Workdemo.002 and Workdemo.004.

213

DS FOR FORMULA 6

terminal_name

FUNCTION

The function returns the name of the Terminal.

SYNTAX

#include "library.h"
unsigned char *terminal_name(void);

PROTOTYPE IN

library.h

DESCRIPTION

The function returns the name of the Terminal, same for both Standard and
Enhanced versions.

RETURN VALUE

Pointer to a string containing one of the following names:

“734”
“732”
“725”
“660”
“630”

SEE ALSO

serial_number()

214

LIBRARY REFERENCE 6

tx1_hreqst

FUNCTION

Request to transmit frame via serial communication line
(HDLCOM10.LIB).

SYNTAX

#include "acqk.inc"
#include "library.h"
#include "acqdef.h"
void tx1_hreqst(struct rtx1_hreqst_message tx_hr_msg);

PROTOTYPE IN

library.h

DESCRIPTION

Request for transmission of a frame of the following format from the communication
handler via serial line:

Meaning INFORMATION EOT

Valid range 0-255 (eot excluded) .eot

Field dimension NMaxChTx1 1

The parameter tx_hr_msg has the following format:

struct rtx1_hreqst_message
{
 unsigned char len;
 unsigned char *datap;
 unsigned char eot;
 unsigned char protc;
};

The parameter .len definines the maximum number of characters to transmit in the
field INFORMATION.

The parameter .*datap is the pointer to the data buffers to transmit (this buffer must
be declared in the application program).

215

DS FOR FORMULA 6

The parameter .eot is the character that is placed at the end of the transmission
frame.

The parameter .protc can assume the two values:

PROTDEFAUL Activation of protocol in RS-232 connection.
PROT_RS485 Activation of protocol in RS-485 connection.
PROTXONOFF Enables reception of xon/xoff during transmission, until

tx_habort() (RS-232 only).
PROTNOXINI Does not initialize xoff status on activation of handler, so a previous

xoff is considered.

The handler autonomously handles construction of the frame, and sends a message
for correct termination.

The process must be terminated with the procedure tx_habort().

The handler allows simultaneous frame transmission and reception (full-duplex)
when transceiver connection is RS-232.

When the transmission is active in xon/xoff mode, reception of a frame via
rx1_hreqst() is not possible.

In RS-485 transmission mode the handler autonomously activates the direction
control LED to switch the reception line to transmission, and vice versa in the
transceiver, so the communication can only be half-duplex.

The handler conveys the result of the transmission process of one frame (generically
defined as acquisition process) through the global structure:

extern struct tx_hanswr_message tx_answer;
struct tx_hanswr_message
{
 unsigned char stat;
 unsigned char len;
 unsigned char errorc;
 unsigned char datab[1];
};

216

LIBRARY REFERENCE 6

The parameter .stat indicates the status of the acquisition, it can only be read and
may assume the following values:

ACQDIS acquisition disabled;
ACQEND acquisition cycle completed;
ACQBEG acquisition cycle started but not completed.

The parameter .len expresses the number of characters actually transmitted.

The parameter .errorc is not used.

The parameter .datab[] is not used.

RETURN VALUE

The function does not have any return parameters.

The handler parameters are contained in the global structure:

extern struct tx_hanswr_message tx_answer;

SEE ALSO

rx_hreqst()
rx_habort()
tx_habort()

EXAMPLE

See example Workdemo.002.

217

DS FOR FORMULA 6

tx2_habort

FUNCTION

Disables transmission.

SYNTAX

#include "library.h"
void tx2_habort (void);

PROTOTYPE IN

library.h

DESCRIPTION

Disables transmission. To re-enable transmission it is necessary to use the
tx2_hreqst() function.

RETURN VALUE

The function does not have any return parameters.

SEE ALSO

tx2_hreqst()
rx2_habort()
rx2_hreqst()
getcomerror()
rxchcom()
txchcom()
setcom()

EXAMPLE

See example Workdemo.003.

218

LIBRARY REFERENCE 6

tx2_hreqst

FUNCTION

Enables transmission.

SYNTAX

#include "library.h"
void tx2_hreqst (void *IntSerAddr);

PROTOTYPE IN

library.h

DESCRIPTION

Enables transmission. This function must be invoked before or during a transmission.
When a tx2_habort() is executed, the transmission is aborted.

RETURN VALUE

The function does not have any return parameters.

SEE ALSO

rx2_hreqst()
rx2_habort()
tx2_habort()
getcomerror()
rxchcom()
txchcom()
setcom()

219

DS FOR FORMULA 6

EXAMPLE

.

.
void tx_record (void)
{
 if (intx !=outtx)
 txchcom(tx_datab[outtx++]); /*Transmit character*/
 else
 {
 nextstep=ENDTXRECORD;
 rdytsk(PROC_TKAPL);
 }
}
.
.
void tkapl(void)
{
 switch(...)
 {
 .
 .
 STEP TX_INIT:
 tx2_hreqst(tx_record);
 outtx=0; /*Pointer to output characters*/
 intx=10; /*10 characters to transmit*/
 memcpy (tx_datab, "0123456789",10);
 tx_record (); /*Activate interrupt transmission*/
 slptsk(PROC_TKAPL);
 ENDOFSTEP;
 STEP ENDTXRECORD:
 printf ("\fEnd of tx");
 .
 .

See also example Workdemo.003.

220

LIBRARY REFERENCE 6

tx_habort

FUNCTION

Conclusion of frame transmission on serial communication line.

SYNTAX

#include "library.h"
void tx_habort(void);

PROTOTYPE IN

library.h

DESCRIPTION

Communication of conclusion of transmission of one frame to serial communication
handler.

The call is indispensable in all those cases of interruption or conclusion of
transmission, for example in the case of removal of the Terminal from the transceiver
or shut-down.

The function disables the transmission/reception direction control LED in RS-485
mode.

Following tx_habort() the predefined global stucture

extern struct tx_hanswr_message tx_answer

is initialized and the parameter .stat assumes the value:

ACQDIS acquisition disabled.

RETURN VALUE

The function does not have any return parameters.

SEE ALSO

tx_hreqst()
rx_habort()
tx_hreqst()

221

DS FOR FORMULA 6

EXAMPLE

See examples in chapter 5.

222

LIBRARY REFERENCE 6

tx_hreqst

FUNCTION

Request to transmit frame via serial communication line
(HDLCOM00.LIB).

SYNTAX

#include "acqk.inc"
#include "library.h"
#include "acqdef.h"
void tx_hreqst(struct rtx_hreqst_message tx_hr_msg);

PROTOTYPE IN

library.h

DESCRIPTION

Request for transmission of a frame of the following format from the communication
handler via serial line:

Meaning STX ST. ADDR INFORMATION EOT

Valid range 02 01-99 16-255 13

Field dimension 1 1 NMaxChTx 1

The parameter tx_hr_msg has the following format:

struct rtx_hreqst_message
{
 unsigned char len;
 unsigned char *datap;
 unsigned char st_addr;
 unsigned char protc;
};

The parameter .len definines the maximum number of characters to transmit in the
field INFORMATION.

The parameter .*datap is the pointer to the data buffers to transmit (this buffer must
be declared in the application program).

223

DS FOR FORMULA 6

The parameter .st_addr defines the station address that identifies the Terminal.

The parameter .protc can assume the two values:

PROTDEFAUL Activation of protocol in RS-232 connection.
PROT_RS485 Activation of protocol in RS-485 connection.

The handler autonomously handles construction of the frame, and sends a message
for correct termination.

The process must be terminated with the procedure tx_habort().

The handler allows simultaneous frame transmission and reception (full-duplex)
when transceiver connection is RS-232.

In RS-485 transmission mode the handler autonomously activates the direction
control LED to switch the reception line to transmission and vice versa in the
transceiver.

The RS-485 transmission mode is only activated in the transmission handler
invocation.

extern struct tx_hanswr_message tx_answer;

struct tx_hanswr_message
{
 unsigned char stat;
 unsigned char len;
 unsigned char errorc;
 unsigned char datab[1];
};

The parameter .stat indicates the status of the acquisition, it can only be read and
may assume the following values:

ACQDIS acquisition disabled;
ACQEND acquisition cycle completed;
ACQBEG acquisition cycle started but not completed.

The parameter .len expresses the number of characters actually transmitted.

The parameter .errorc is not used.

The parameter .datab[] is not used.

224

LIBRARY REFERENCE 6

RETURN VALUE

The function does not have any return parameters.

The handler parameters are contained in the global structure.

extern struct tx_hanswr_message tx_answer;

SEE ALSO

rx_hreqst()
rx_habort()
tx_habort()

EXAMPLE

See examples in chapter 5.

225

DS FOR FORMULA 6

txchcom

FUNCTION

Enters a character into the transmission buffer.

SYNTAX

#include "library.h"
void txchcom(unsigned char);

PROTOTYPE IN

library.h

DESCRIPTION

Enters a character into the transmission buffer, thereby priming the transmission
procedure to interrupt.

RETURN VALUE

The function does not have any return parameters.

SEE ALSO

rx2_hreqst()
rx2_habort()
tx2_hreqst()
tx2_habort()
rxchcom()
setcom()

EXAMPLE

See example Workdemo.003.

226

LIBRARY REFERENCE 6

Usr_EraseE2prom

FUNCTION

Delete the E2prom.

SYNTAX

#include "library.h"
#include "acqdef.h"
void Usr_EraseE2prom(void);

PROTOTYPE IN

library.h

DESCRIPTION

The function Usr_EraseE2prom() deletes all information from the E2prom (that is,
user bytes from 0 to 125 are cleared).

RETURN VALUE

The function does not have any return parameters.

NOTES

This is a dummy function if using one of the following libraries: E2PNOUSR.LIB,
E2PCONSN.LIB or EMPTYE2P.LIB.

SEE ALSO

Usr_ReadE2prom()
Usr_WriteE2prom()

EXAMPLE

See example Workdemo.001.

227

DS FOR FORMULA 6

Usr_ReadE2prom

FUNCTION

Read from E2prom.

SYNTAX

#include "library.h"
#include "acqdef.h"
unsigned char Usr_ReadE2prom(struct E2prom

*rd_strutt);

PROTOTYPE IN

library.h

DESCRIPTION

The function Usr_ReadE2prom reads bytes 0 to 125 from the E2prom.

The parameter rd_strutt has the following structure:

struct E2prom
{
 unsigned char len;
 unsigned char *datap;
};

The parameter .len indicates if the E2prom memory has been previously written,
(0=E2prom cleared, 126=E2prom written).

The parameter .*datap is the pointer to the data buffer read from the E2prom. The
buffer is not modified if the .len parameter = 0).

RETURN VALUE

NOK = bad reading
OK = good reading

NOTES

This is a dummy function if using one of the following libraries: E2PNOUSR.LIB,
E2PCONSN.LIB or EMPTYE2P.LIB.

228

LIBRARY REFERENCE 6

SEE ALSO

Usr_EraseE2prom()
Usr_WriteE2prom()

EXAMPLE

#include "acqdef.h"
#include "library.h"
struct E2prom testE2p;
static unsigned char mebuff [MAXMEMOBUF];
.
.
void readE2prom (void);

 {
 memset(mebuff,’\0’, MAXMEMOBUF); /* Buffer initialization */
 testE2p.datap=mebuff;
 if (Usr_ReadE2prom(&testE2p));
 {
 gotoxy (0,2);
 for (I=0; I=13; I++)
 Putchar (testE2p.datap [I]);
.
.
 };
 else
 {
 gotoxy (0,2);
 printf (“Bad reading”);
 };
.
.

See also example Workdemo.001.

229

DS FOR FORMULA 6

Usr_WriteE2prom

FUNCTION

Write the E2prom.

SYNTAX

#include "library.h"
#include "acqdef.h"
unsigned char Usr_WriteE2prom(struct E2prom

wr_strutt);

PROTOTYPE IN

library.h

DESCRIPTION

The function Usr_WriteE2prom writes to bytes 0 to 125 in the E2prom.

The parameter wr_strutt has the following structure:

struct E2prom
{
 unsigned char len;
 unsigned char *datap;
};

The parameter .len indicates the number of user bytes that will be written in
E2prom (if .len is less than 126, the remaining user bytes are cleared).

The parameter .*datap is the pointer to the data that will be written in E2prom.

RETURN VALUE

The function does not have any return parameters.

NOTES

This is a dummy function if using one of the following libraries: E2PNOUSR.LIB,
E2PCONSN.LIB or EMPTYE2P.LIB.

230

LIBRARY REFERENCE 6

SEE ALSO

Usr_EraseE2prom()
Usr_ReadE2prom()

EXAMPLE

#include "acqdef.h"
#include "library.h"
struct E2prom testE2p;
static unsigned char mybuff [MAXMEMOBUF];
.
.
void WriteE2prom (void);

 {
 strcpy(mebuff,”Write test”);
 testE2p.LEN=18;
 testE2p.datap=mebuff;
 Usr_WriteE2prom(testE2p);
 }
.
.

See also example Workdemo.001.

231

DS FOR FORMULA 6

writeclock

FUNCTION

Writing of date / time to the Real Time Clock.

SYNTAX

#include "library.h"
#include "acqdef.h"
void writeclock(struct time settingtime);

PROTOTYPE IN

library.h

DESCRIPTION

The function writeclock() writes the hour, minutes, seconds, day, month and
year to the Real Time Clock available in the Terminal by means of the input
parameter settingtime, which has the following structure:

struct time
{
 unsigned char year; (0-99)
 unsigned char month; (1-12, 1 = Jan, 2 = Feb, ...)
 unsigned char day; (1-31)
 unsigned char dayofw; (0-6, 0 = Sun, 1 = Mon, ...)
 unsigned char hour; (0-23)
 unsigned char min; (0-59)
 unsigned char sec; (0-59)
 unsigned char ampm; (ignore)
};

RETURN VALUE

The function does not have any return parameters.

NOTES

At each call, all the values of the structure given, except .ampm, which must be set
as a parameter of the function.

232

LIBRARY REFERENCE 6

SEE ALSO

readclock()
clockiset()

EXAMPLE

#include "acqdef.h"
/* clock data structure definition */
void set_ktime(void)
{
struct time settim;
 settim.sec = 56;
 settim.min = 43;
 settim.hour = 21;
 settim.day = 31;
 settim.month = 4;
 settim.year = 01;
 settim.dayofw = 6;
 writeclock(settim); /* write clock */
}

233

DS FOR FORMULA 6

wrtim

FUNCTION

Writes the status and time of a timer.

SYNTAX

#include "library.h"
#include "genk.inc"
void wrtim(unsigned char id_timer, unsigned char

stat_req, unsigned int countval);

PROTOTYPE IN

library.h

DESCRIPTION

The function wrtim() writes to the timer specified by the input parameter
id_timer.

The parameter stat_req specifies the setting status of the timer.

The parameter countval specifies the value with which to load the timer and the
values are explicitly declared in the module GENK.INC.

The parameters must be in the following ranges:

0 =< id_timer < N_MAX_TIMERS (30)

0 < countval < FFFFH

stat_req:
- IDLETIM
- RUNTIM

wrtim() generates fault code (PROC_WRTIM, alloc_timers, id_timer) if
id_timer isn’t a valid identifier, as returned by rqtim(), and if stat_req is not
among the parameters specified.

234

LIBRARY REFERENCE 6

RETURN VALUE

The function does not have any return parameters.

EXAMPLE

include "genk.inc"
include "iogenk.inc"

include "library.h"

 unsigned char idt_bell;

void endtim_bell(void)
{
 wrtim(idt_bell, IDLETIM, 0);
 ring(C5_RN, MEDIUM_RD, 1);
} /* end apl_startup() */
void apl_startup(void)
{
 .
 .
 idt_bell = rqtim(endtim_bell);
 .
 .
} /* end apl_startup() */

void tkapl_startup(void)
{
 switch(nextstep)
 {
 .
 .
 STEP 3:
 wrtim(idt_bell, RUNTIM, 2 SECONDS);
 nextstep = 4;
 ENDOFSTEP;

 STEP4
 .
 .
 }
}

In this example the application task uses a timer to obtain a beep with a two second
delay.

235

DS FOR FORMULA 6

The timer is allocated upon start-up via the procedure rqtim() and is then used via
its identifier: idt_bell.

When the timer elapses the procedure endtim_bell() is called, which typically
executes the action that you want to delay.

See also examples Workdemo.002 and Workdemo.004.

236

LIBRARY REFERENCE 6

1.2 LIBRARY VDISK

In the Terminal the RAM is divided into 32Kb segments. The first segment, which is
allocated from 0 to 7FFFH, is always visible; the subsequent banks, which are
allocated from 8000H to FFFFH, are overlapping. Normally the selection of these
banks is done using the DS for Formula library functions (bankset(),
sv_currentbank() and rp_previousbank()).

By using the VDISK library instead it is possible to use the memory as if it were
contiguous. This area of memory is seen as a disk and it is therefore used as an I/O
area for files. With this in mind, some functions have been developed which allow file
allocation, data reading and writing, positioning in any part of files, etc.

To allocate files the operating system needs all the information regarding the
structure of the file itself and in particular: the file identifier, the maximum length of
fields per record and, lastly, all the maximum lengths of the fields. This information
must be contained in a structure such as:

typedef struct tagINFO
{
 UCHAR name;
 ULONG length;
 ULONG Nrecords;
 UCHAR Fields;
 UCHAR Field_length[20];
}INFO;

where:

name the file identifier. This is a number from 0 to 15. A maximum of 16
files can be managed.

length the file length expressed in bytes. The maximum size is given by
the physical limit imposed by the amount of memory in the relative
Terminal.

Nrecords the number of records.
Fields the number of fields for each record. There are a maximum of 20

fields per record.
Field_length the size of each field expressed in bytes. Since the maximum

record size is 255 bytes, the sum of the length of all the fields can
never exceed this value.

Once the file structure is defined, the RAM formatting of the file must be carried out.
This is done by passing the structure to the AllocFile() function.

To access the file field functions _lwrite, write, _lread, and _lseek are used.
Each field can be associated with a character string having a maximum length equal
to the maximum number of columns of the Terminal display, called prompt. The
prompts can be set and read using the SetPrompt() and GetPrompt() functions.

237

DS FOR FORMULA 6

AllocFile

FUNCTION

Allows a memory space to be allocated.

SYNTAX

#include "vdisk.h"
HFILE AllocFile(INFO *file)

PROTOTYPE IN

vdisk.h

RETURN VALUE

The function returns the operation result: if the result is correct the value is 0.

If more memory is allocated than available or if the parameters sent from the INFO
structure are incorrect, the function returns:

NUL_LENGTH if the allocation is requested of a 0-byte file
MEMORY_FULL if the file requires more memory than is available
PARM_ERROR if the parameters sent are incorrect, eg. when the product of the

maximum number of records and the sum of the lengths of each
field does not match the maximum length of the file specified in
the length parameter.

SEE ALSO

MemoryQuantity()
_directory()
_lread()
_lseek()
_lwrite()
write()

238

LIBRARY REFERENCE 6

EXAMPLE

#include "vdisk.h"
.
.
static INFO dbase;
static HFILE handle;
.
.
void tkapl(void)
{
.
.
 STEP INITDBASE :
 /* Create dbase */
 dbase.name = 0; /* Dbase ID */
 dbase.length = 56000L; /* Max dbase length in bytes */
 dbase.Nrecords = 2000; /* Max records */
 dbase.Fields = 3; /* Max field */
 dbase.Field_length[0] = 8; /* Field 0 length 8 bytes */
 dbase.Field_length[1] = 8; /* Field 1 length 8 bytes */
 dbase.Field_length[2] = 12; /* Field 2 length 12 bytes */
 switch (handle = AllocFile(&dbase))
 {
 case NUL_LENGTH:
 printf("\fnull length");
 .
 . .
 break;
 case MEMORY_FULL:
 printf("\fmemory full");
 .
 . .
 break;
 case PARM_ERROR:
 printf("\fparm. error");
 .
 . .
 break;
 default:
 printf("\fAllocFile OK");
}
handle = dbase.name;

239

DS FOR FORMULA 6

GetPrompt

FUNCTION

Requests a prompt.

SYNTAX

#include "vdisk.h"
BOOL GetPrompt(HFILE handle, UCHAR field, LPCSTR

prompt);

PROTOTYPE IN

vdisk.h

DESCRIPTION

From the handle file, the function moves the prompt of field field to the prompt
buffer.

RETURN VALUE

The functions returns TRUE if a prompt of an existing field is requested, otherwise it
returns FALSE.

SEE ALSO

AllocFile()
GetPrompt()

EXAMPLE

#include "vdisk.h"
.
.
static INFO dbase;
static HFILE handle;
static READPOS offset;
.
.
void apl_startup(void)
{
 .

240

LIBRARY REFERENCE 6

 .
 MemoryQuantity();
 .
 .
}
.
.
void tkapl(void)
{
 char string [20];
.
.
 STEP INITDBASE :
 /* Create dbase */
 dbase.name = 0; /* Dbase ID */
 dbase.length = 56000L; /* Max dbase length in bytes */
 dbase.Nrecords = 2000; /* Max records */
 dbase.Fields = 3; /* Max field */
 dbase.Field_length[0] = 8; /*Field 0 length 8 bytes */
 dbase.Field_length[1] = 8; /*Field 1 length 8 bytes */
 dbase.Field_length[2] = 12; /*Field 2 length 12 bytes */
 switch (handle = AllocFile(&dbase))
 {
 case NUL_LENGTH:
 printf("\fnull length");
 .
 .
 break;
 case MEMORY_FULL:
 printf("\fmemory full");
 .
 .
 break;
 case PARM_ERROR:
 printf("\fparm. error");
 .
 .
 break;
 default:
 printf("\fAllocFile OK");
 SetPrompt(handle, 1, "Field2"); /* Insert prompt of

second field */
 offset.record = 10L;
 offset.field = 1;
 /* sets the file pointer at record no.10 field no.1

from file beginning */
 if (_lseek(handle,&offset,SEEK_SET)==HFILE_ERROR)

241

DS FOR FORMULA 6

 printf("\nout of file");
 else /* write the string "10000000" */
 if (_lwrite(handle, "10000000", 8) == 8)
 {
 offset.record = 10L;
 offset.field =1;
 _lread(handle, string, &offset);
 printf("\f%s", string);
 GetPrompt(handle, 1, string);
 printf("\n%s", string);
 .
 .
 }

242

LIBRARY REFERENCE 6

MemoryQuantity

FUNCTION

Initializes the memory for the Vdisk Library

SYNTAX

#include "vdisk.h"
voidMemoryQuantity(void);

PROTOTYPE IN

vdisk.h

DESCRIPTION

The function performs memory formatting (from 8000H to FFFFH). This function must
be used only the first time the Terminal is switched on.

RETURN VALUE

The function does not have any return parameters.

SEE ALSO

AllocFile()
_directory()
_lread()
_lseek()
_lwrite()
write()

243

DS FOR FORMULA 6

EXAMPLE

#include "vdisk.h"
.
.
static INFO dbase;
static HFILE handle;
static READPOS offset;
.
.
void apl_startup(void)
{
.
.
MemoryQuantity();
.
.
}
.
.
.
void tkapl(void)
{
 char string [20];
.
.
 STEP INITDBASE :
 /* Create dbase */
 dbase.name = 0; /* Dbase ID */
 dbase.length = 56000L; /* Max dbase length in bytes */
 dbase.Nrecords = 2000; /* Max records */
 dbase.Fields = 3; /* Max field */
 dbase.Field_length[0] = 8; /* Field 0 length 8 bytes */
 dbase.Field_length[1] = 8; /* Field 1 length 8 bytes */
 dbase.Field_length[2] = 12; /* Field 2 length 12 bytes */
 switch (handle = AllocFile(&dbase))
 {
 case NUL_LENGTH:
 printf("\fnull length");
 .
 .
 break;
 case MEMORY_FULL:
 printf("\fmemory full");
 .
 .
 break;

244

LIBRARY REFERENCE 6

 case PARM_ERROR:
 printf("\fparm. error");
 .
 .
 break;
 default:
 printf("\fAllocFile OK");
 offset.record = 10L;
 offset.field = 1;
/* sets the file pointer at record no.10 field no.1 from file
beginning */
 if (_lseek(handle,&offset,SEEK_SET)==HFILE_ERROR)
 printf("\nout of file");
 else /* write the string "10000000" */
 if (_lwrite(handle, "10000000", 8) == 8)
 {
 offset.record = 10L;
 offset.field =1;
 _lread(handle, string, &offset);
 printf("\n%s", string);
 .
 .
 }

245

DS FOR FORMULA 6

SetPrompt

FUNCTION

Loads the prompt into memory.

SYNTAX

#include "vdisk.h"
BOOL SetPrompt(HFILE handle, UCHAR field, LPCSTR

prompt);

PROTOTYPE IN

vdisk.h

DESCRIPTION

The function inserts a prompt message into a memory table for a field (field) and
file handle. The length of the prompt is limited to the number of columns of the
display. Prompts longer than 20 characters cannot be inserted.

RETURN VALUE

The function returns TRUE when the prompt is inserted in the table. It returns FALSE
when the prompt exceeds 20 characters or when an attempt is made to insert the
prompt of an non-existing field.

SEE ALSO

AllocFile()
GetPrompt()

246

LIBRARY REFERENCE 6

EXAMPLE

#include "vdisk.h"
.
.
static INFO dbase;
static HFILE handle;
static READPOS offset;
.
.
void apl_startup(void)
{
 .
 .
 MemoryQuantity();
 .
 .
}
.
.
.
 void tkapl(void)
 {
 char string [20];
.
.
 STEP INITDBASE :
 /* Create dbase */
 dbase.name = 0; /* Dbase ID */
 dbase.length = 56000L; /* Max dbase length in bytes */
 dbase.Nrecords = 2000; /* Max records */
 dbase.Fields = 3; /* Max field */
 dbase.Field_length[0] = 8; /* Field 0 length 8 bytes */
 dbase.Field_length[1] = 8; /* Field 1 length 8 bytes */
 dbase.Field_length[2] = 12; /* Field 2 length 12 bytes */
 switch (handle = AllocFile(&dbase))
 {
 case NUL_LENGTH:
 printf("\fnull length");
 .
 .
 break;
 case MEMORY_FULL:
 printf("\fmemory full");
 .
 .
 break;

247

DS FOR FORMULA 6

 case PARM_ERROR:
 printf("\fparm. error");
 .
 .
 break;
 default:
 printf("\fAllocFile OK");
 SetPrompt(handle, 1, "Field2"); /* Insert prompt of second

field */
 offset.record = 10L;
 offset.field = 1;
/* sets the file pointer at record no.10 field no.1 from file
beginning */
 if (_lseek(handle,&offset,SEEK_SET)==HFILE_ERROR)
 printf("\nout of file");
 else /* write the string "10000000" */
 if (_lwrite(handle, "10000000", 8) == 8)
 {
 offset.record = 10L;
 offset.field =1;
 _lread(handle, string, &offset);
 printf("\n%s", string);
 .
 .
}

248

LIBRARY REFERENCE 6

_directory

FUNCTION

Requests information on the file.

SYNTAX

#include "vdisk.h"
void _directory(HFILE handle, USERDIR *userdir);

PROTOTYPE IN

vdisk.h

DESCRIPTION

The function provides USERDIR-type information of a file handle. USERDIR is a
structure of the following type:

typedef struct tagUSERDIR
{
ULONG Nrecords; /* Selected Record */
ULONG Length; /* Max length of the file expressed in bytes */
UCHAR MaxField; /* Max fields */
ULONG MaxRecord; /* Max records */
UCHAR CurField; /* Selected field */
UINT Address; /* Current field/record address */
UCHAR Bank; /* Currently used memory bank */
}

This function must always be called after the file is allocated.

RETURN VALUE

USERDIR contents the information about the file specificated in handle.

SEE ALSO

_lseek() write() AllocFile()
_lwrite() _lread()

EXAMPLE

See example Workdemo.003.

249

DS FOR FORMULA 6

_lread

FUNCTION

Reads a field from a file.

SYNTAX

#include "vdisk.h"
UCHAR _lread(HFILE handle, LPCSTR buf, READPOS

*filepointer);

PROTOTYPE IN

vdisk.h

DESCRIPTION

In the handle file, the function reads the contents of the field pointed to by .record
and .field and copies it into the buffer buf. The number of bytes transferred is
equal to the length of the field. The READPOS type is defined as:

typedef struct tagREADPOS
{
ULONG record;
UCHAR field;
}READPOS;

RETURN VALUE

If the reading is successful, it returns 0, otherwise it returns HFILE_ERROR. In the
latter case an error may occur since you have tried to read a field that is not provided
for in the file.

SEE ALSO

AllocFile()
MemoryQuantity()
_directory()
_lseek()
_lwrite()
write()

250

LIBRARY REFERENCE 6

EXAMPLE

#include "vdisk.h"
.
.
static INFO dbase;
static HFILE handle;
static READPOS offset;
.
.
void tkapl(void)
{
 char string [20];
.
.
 STEP INITDBASE:
 /* Create dbase */
 dbase.name = 0; /* Dbase ID */
 dbase.length = 56000L; /* Max dbase length in bytes */
 dbase.Nrecords = 2000; /* Max records */
 dbase.Fields = 3; /* Max field */
 dbase.Field_length[0] = 8; /* Field 0 length 8 bytes */
 dbase.Field_length[1] = 8; /* Field 1 length 8 bytes */
 dbase.Field_length[2] = 12; /* Field 2 length 12 bytes */
 switch (handle = AllocFile(&dbase))
 {
 case NUL_LENGTH:
 printf("\fnull length");
 .
 .
 break;
 case MEMORY_FULL:
 printf("\fmemory full");
 .
 .
 break;
 case PARM_ERROR:
 printf("\fparm. error");
 .
 .
 break;
 default:
 printf("\fAllocFile OK");
 offset.record = 10L;
 offset.field = 1;
/* sets the file pointer at record no.10 field no.1 from file
beginning */

251

DS FOR FORMULA 6

 if (_lseek(handle,&offset,SEEK_SET)==HFILE_ERROR)
 printf("\nout of file");
 else /* write the string "10000000" */
 if (_lwrite(handle, "10000000", 8) == 8)
 {
 offset.record = 10L;
 offset.field =1;
 _lread(handle, string, &offset);
 printf("\n%s", string);
 }

252

LIBRARY REFERENCE 6

_lseek

FUNCTION

Moves the file pointer.

SYNTAX

#include "vdisk.h"
UCHAR _lseek(HFILE handle, READPOS *offset, UCHAR

fromwhere);

PROTOTYPE IN

vdisk.h

DESCRIPTION

The function positions the pointer of the handle file to the new offset position
from fromwhere. offset is defined as being of a READPOS type. This has the
structure:

typedef struct tagREADPOS
{
ULONG record;
UCHAR field;
}READPOS;

fromwhere is a constant that indicates from where the file pointer is to be moved. It
can have one of the following values

SEEK_SET moves the file pointer from the beginning of the file to the offset.record

and offset.field position;
SEEK_CUR moves the file pointer from the current position and the one specified in

offeset.record to the offset.field field
SEEK_END moves the file pointer from the end of the file to the end file position

minus offset.record and to the position offset.field.

RETURN VALUE

The function returns HFILE_ERROR if an attempt is made to position the file pointer
beyond the max number of fields and records specified in the file allocation phase.
The handle returns when movement of the pointer is successful.

253

DS FOR FORMULA 6

SEE ALSO

AllocFile()
MemoryQuantity()
_directory()
_lread()
_lwrite()
write()

EXAMPLE

#include "vdisk.h"
.
.
static INFO dbase;
static HFILE handle;
static READPOS offset;
.
.
void tkapl(void)
{
.
.
 STEP INITDBASE:
 /* Create dbase */
 dbase.name = 0; /* Dbase ID */
 dbase.length = 56000L; /* Max dbase length in bytes */
 dbase.Nrecords = 2000; /* Max records */
 dbase.Fields = 3; /* Max field */
 dbase.Field_length[0] = 8; /* Field 0 length 8 bytes */
 dbase.Field_length[1] = 8; /* Field 1 length 8 bytes */
 dbase.Field_length[2] = 12; /* Field 2 length 12 bytes */
 switch (handle = AllocFile(&dbase))
 {
 case NUL_LENGTH:
 printf("\fnull length");
.
.
 break;
 case MEMORY_FULL:
 printf("\fmemory full");
.
.
 break;
 case PARM_ERROR:
 printf("\fparm. error");
.

254

LIBRARY REFERENCE 6

.
 break;
 default:
 printf("\fAllocFile OK");
 offset.record = 10L;
 offset.field = 1;
/* sets the file pointer at record no.10 field no.1 from file
beginning */
 if (_lseek(handle,&offset,SEEK_SET)==HFILE_ERROR)
 printf("\nout of file");
 else
.
.
}

255

DS FOR FORMULA 6

_lwrite

FUNCTION

Writes to a file

SYNTAX

#include "vdisk.h"
UCHAR _lwrite(HFILE handle, LPCSTR buf, UCHAR len);

PROTOTYPE IN

vdisk.h

DESCRIPTION

At the current position of the pointer, the function writes the string contained in buf,
of length len, to the handle file. The maximum length of the string is 255
characters. The string will be written in the file with flush-right alignment and with the
space as a fill character. If you try to write a longer string in the selected field, only
the first n characters corresponding to the field length will be inserted.

RETURN VALUE

If writing is successful, the number of bytes actually written is returned, otherwise
HFILE_ERROR is returned. In this latter case, an error may occur since the end of the
file has already been reached.

SEE ALSO

AllocFile()
MemoryQuantity()
_directory()
_lread()
_lseek()
write()

256

LIBRARY REFERENCE 6

EXAMPLE

#include "vdisk.h"
.
.
static INFO dbase;
static HFILE handle;
static READPOS offset;
.
.
void tkapl(void)
{
.
.
.
.
 STEP INITDBASE:
 /* Create dbase */
 dbase.name = 0; /* Dbase ID */
 dbase.length = 56000L; /* Max dbase length in bytes */
 dbase.Nrecords = 2000; /* Max records */
 dbase.Fields = 3; /* Max field */
 dbase.Field_length[0] = 8; /* Field 0 length 8 bytes */
 dbase.Field_length[1] = 8; /* Field 1 length 8 bytes */
 dbase.Field_length[2] = 12; /* Field 2 length 12 bytes */
 switch (handle = AllocFile(&dbase))
 {
 case NUL_LENGTH:
 printf("\fnull length");
 .
 .
 break;
 case MEMORY_FULL:
 printf("\fmemory full");
 .
 .
 break;
 case PARM_ERROR:
 printf("\fparm. error");
 .
 .
 break;
 default:
 printf("\fAllocFile OK");
 offset.record = 10L;
 offset.field = 1;

257

DS FOR FORMULA 6

/* sets the file pointer at record no.10 field no.1 from file
beginning */
 if (_lseek(handle,&offset,SEEK_SET)==HFILE_ERROR)
 printf("\nout of file");
 else /* write the string "10000000" */
 if (_lwrite(handle, "10000000", 8) == 8)
 printf("\nWrite Ok");
 .
 .
}

258

LIBRARY REFERENCE 6

write

FUNCTION

Writes to a file.

SYNTAX

#include "vdisk.h"
UCHAR write(HFILE handle, LPCSTR buf, UCHAR len);

PROTOTYPE IN

vdisk.h

DESCRIPTION

At the current position of the pointer, the function writes the string contained in buf,
of length len, to the handle file. The maximum length of the string is 255
characters. The string will be written in the file with flush-right alignment and with the
space as a fill character. The file pointer will be automatically increased. If you try to
write a longer string in the selected field, only the first n characters corresponding to
the field length will be inserted.

RETURN VALUE

If writing is successful, the number of bytes actually written is returned, otherwise
HFILE_ERROR is returned. In this latter case, an error may occur since the end of the
file has already been reached.

SEE ALSO

AllocFile()
MemoryQuantity()
_directory()
_lread()
_lseek()
_lwrite()

259

DS FOR FORMULA 6

EXAMPLE

#include "vdisk.h"
.
.
static INFO dbase;
static HFILE handle;
static READPOS offset;
.
.
void tkapl(void)
{
.
.
 STEP INITDBASE:
 /* Create dbase */
 dbase.name = 0; /* Dbase ID */
 dbase.length = 56000L; /* Max dbase length in bytes */
 dbase.Nrecords = 2000; /* Max records */
 dbase.Fields = 3; /* Max field */
 dbase.Field_length[0] = 8; /* Field 0 length 8 bytes */
 dbase.Field_length[1] = 8; /* Field 1 length 8 bytes */
 dbase.Field_length[2] = 12; /* Field 2 length 12 bytes */
 switch (handle = AllocFile(&dbase))
 {
 case NUL_LENGTH:
 printf("\fnull length");
 .
 .
 break;
 case MEMORY_FULL:
 printf("\fmemory full");
 .
 .
 break;
 case PARM_ERROR:
 printf("\fparm. error");
 .
 .
 break;
 default:
 printf("\fAllocFile OK");
 offset.record = 10L;
 offset.field = 1;
/* sets the file pointer at record no.10 field no.1 from file
beginning */
 if (_lseek(handle,&offset,SEEK_SET)==HFILE_ERROR)

260

LIBRARY REFERENCE 6

 printf("\nout of file");
 else /* write the string "10000000" */
 if (write(handle, "10000000", 8) == 8)
 printf("\nWrite Ok");
 .
 .
}

261

DS FOR FORMULA A

A COMPATIBILITY AND PORTABILITY

DS FOR FORMULA COMPATIBILITY

DS for Formula makes it possible to recompile existing application program source
code generated with the older specific Terminal Development Systems (DS734A,
DS725, DS660, and DS630).

However, we provide you with some noted compatibility issues that could help in
converting your existing application.

Modifications that can generate compiling errors:

- The Keyboard Handler interfacing regarding event functions has been modified

for the F660 and F630 terminals.
Solution: to maintain user application portability, it is necessary to include either
the UPG660R1.00 or UPG630R1.00 files in APL.C.

- The include file REG552.H refers to a different microprocessor for F660 and
F734 terminals.
Solution: substitute #include<reg552.h> with #include<reg52.h> in APL.C

- The constant structure predef_codes in ACQDEF.H has been eliminated
because it is never used in DS for Formula.
Solution: define the structure predef_codes in the application.

- The INITEND.OBJ module has been introduced which fixes a problem of
incomplete variable initialization during linking that occurred when compiling
some application programs. It is used together with specific commands in the
new link.cmd files and cannot simply substitute INIT.OBJ in an old link.cmd file.

Modifications that can cause execution errors:

- A new check has been added to the function Usr_WriteE2prom() in the field

.len of the input structure. The .len value must not be larger than126 bytes,
otherwise the P65 fault is issued, for example when re-compiling old sources in
which the constants MAXMEMORY (127) and MAXMEMOBUF (128) were assigned to
the .len field.
Solution: when using Usr_WriteE2prom(), substitute MAXMEMORY or
MAXMEMOBUF with the new MAXMEMOSTR (126) in assigning the E2prom write
buffer length .len.

262

COMPATIBILITY AND PORTABILITY A

- The void idata_init(void)function is no longer used. There could be
problems on startup when using the laser.

 Solution: remove the void idata_init(void)function.

Modifications that can cause different behavior of the terminal:

- In DS for Formula the TIMER is 40% faster in order to correctly generate

represented time values. For example, the T10SEC constant, in previous DS
versions, erroneously generated a 14-second delay, while in DS for Formula, the
correct 10-second delay is generated. Among the two cases, leaving constant
values unchanged, there is a 40% reduction in time.
Solution: increase all constants relative to the TIMER by 40%. (not for the
ring() function)

- Among the input constants for the ring() function, MAX_RD has been
increased from 100 to 120. Moreover, these input constants must not be relative
to the TIMER.
Solution: substitute MAX_RD with VERY_LONG_RD.

- The UPCE-SYS1 code symbology has been disabled by default, even if
SY_UPC_EAN or SY_UPC_ONLY or SY_UPCE_ONLY are enabled. UPCE-SYS1
can however be enabled separately if necessary.
Solution: symblg(SY_ENABLE, SY_ UPCESYS1)

- The single character Barcode Keypad <ENTER> code is no longer acquired by
the terminal without enabling ACQSNGLCH.
Solution: code struct dec_hreqst_message DEC_QUESTION[n] = {{
MACQSNGLCH|….

Modifications that improve behavior of the terminal:

- For laser terminals, after acquisition of single character Barcode Keypad codes

the laser is turned off

- The disabling of code acquisitions after reading a Procedure code from the
Barcode Keypad has been eliminated

- If autorepeat is enabled, for CONSOLE keys, autorepeat is valid also in "shift"
mode for the successive letter selection on the same key.

- autorepeat of the BS key or CONSOLE keys by the Operating System, has been
eliminated if the acquisition buffer is respectively null or full.

- regarding keyboard and reader acquisition, with the default string defined (not
null) and the BS key is pressed or read; the first instance no longer erases the

263

DS FOR FORMULA A

far right character of the default string because in this case BS is interpreted as
the input function for default output buffer editing.

- regarding keyboard acquisition, with the default string defined (not null) and
pressing any FUNCTION, ARROW or SHIFT key, the erroneous visualization of
the default string has been eliminated.

- if "shift" mode is enabled and a CONSOLE key is pressed with the output buffer
full, "shift" mode is disabled

- For F660, when first, second or third level "shift" mode is enabled for access to
the CONSOLE key characters (MULTIPLE1 or MULTIPLE2 or MULTIPLE3) and
the SEND key is pressed, "shift" mode is disabled (and TIMER mode in the case
of second or third level SHIFT.

- when second or third level "shift" mode is enabled for access to the CONSOLE
key characters (MULTIPLE or MULTIPLE3) and the F1, F2, F3, F4 keys are
pressed for the F734 terminal or F1, F2 for the F660 terminal, the Operating
System no longer interprets the special function key presses F1, F2, F3, F4 for
F734 but rather the function key presses F1, F2, F3, F4. For F660 the F3, F4
function key presses are not interpreted but rather the F1, F2 function key
presses.

Modifications to Functions:

- The include file HANSWER.H can be inserted into the APL.C modules to
substitute the defined DS external global structures containing the handler
response answers.

- the ram_config() function has been defined to manage the Terminal RAM
configuration instead of the global variable swb_ram_config. See the
ram_config() and bankset() function descriptions for details.

- regarding reader acquisition, it is now possible to define a default string smaller
than the minimum acquirable number, since it can be edited with the Barcode
Keypad characters

- the Operating System now automatically issues the retrig_psssd() upon
code acquisition and at the beginning of a radio communication. Therefore it is
no longer necessary to insert this function into dec_event() and ir_event().

264

COMPATIBILITY AND PORTABILITY A

Added Functions:

- the Keil BL51 banking linker has been used to link programs larger than 64 Kb

(up to 512 Kb) that can be loaded onto the F734-E, F725-E and F660-E
terminals.

- the Keyboard event handling has been modified for F660 and F630 terminals so
that portability among all the terminals is possible

- the MAKE file has been introduced to selectively compile only the source files
modified by the user or those that have not yet been compiled.

- the SEND.BAT file has been introduced for downloading applications separately
from compiling and from linking through M.BAT

- the font definition files have been made available to the programmer for
individual character modification or to aid in new font definitions. DS for Formula
provides two font files, FONT.C and NEWFONT.C, which are the reduced and
complete versions of the same font with the exception of two characters.

- the new function set_display_tab_offset() has been implemented to
manage the more than 224 different printable characters with putchar()

- the new function serial_number() has been implemented which returns the
serial number of the terminal (dummy for F660 terminals which have no E2prom)

- the new function terminal_name() has been implemented which returns the
name of the terminal

- the contrast() function now accepts new input values. Two pre-defined input
constants DEFAULT_CONTRAST and CURRENT_CONTRAST are available. Using
the first input value the function returns the default contrast (display optimized),
while with the second the function returns the current contrast value.

- the ring() function now accepts new input values. Two pre-defined input
constants VERY_SHORT_RD and VERY_LONG_RD are available. In addition to the
modification for MAX_RD, these generate two new ring durations

- the setcom() function now accepts a new input value. The pre-defined input
constant PNONE is available to allow communication with no parity bit

- the symblg() function now accepts a new input value. The pre-defined input
constant SY_UPCESYS1 is available to enable UPC-E SYS1 code symbology
acquisition which is disabled by default in DS for Formula

- the symblg() function now accepts a new input value. The pre-defined input
constant SY_UPCE0SUPCH8 is available to enable acquisition of UPC-E code
symbology with ‘0’ suppression (6 characters), plus the addition of the first
character sys (‘0’ or ‘1’) and the last control character (check digit), for a total of
8 characters

265

DS FOR FORMULA A

- the ispechar() function now accepts new input values. The pre-defined input
constants ACQALLPRNEW and ACQ256CH are available. In the first case to return
OK if the input is in the range 20H-FFH, in the second case to always return OK

- the dec_hreqst() function now accepts a new input value. The pre-defined
input constant MACQSNGLCHALL is available to also enable the acquisition of
single character Barcode Keypad codes composed of $ plus three numbers
representing the equivalent decimal ASCII value.

- the kb_hreqst() function now accepts a new input value. The pre-defined
input constant ACQCAPSMA is available to enable the caps lock behavior on
acquisition by double pressing the SHIFT key. (dummy for F630 terminal)

- the dec_hreqst() function now accepts a new input value for F725-E and
F725 terminals. The pre-defined input constant MACQLN2000 is available to
enable acquisition using the long range laser and aiming time of 2 seconds.

- the enabling and disabling of the keyboard handler functions kb_hreqst() and
kb_habort() have also been implemented for F630 terminals. It is therefore
also possible for this terminal to enable autorepeat of the arrows and the
acquisition of a default string using the SCAN key if enabled as the ENTER key

APPLICATION PROGRAM PORTABILITY

An application program developed for a particular Terminal of the Formula Basic Line
can be ported on any other Terminal of the Basic Line family, paying attention to
differences in the available terminal resources or features such as: keyboard,
E2prom, wakeup, amount of available RAM, Flash memory configuration (extended
or not).

To make use of the same sources for a different Terminal, these must be compiled
and linked using the desired Terminal libraries. The programmer can follow the steps
described in par. 3.3.2, simply adapting the application lines of the LINK.CMD file
that can be found in the WORK.ORG folder of the desired Terminal.

CAUTION: application programs aren’t compatible at executable level.
Downloading an executable file onto a different Terminal results in one of the
two fault codes P21C04Mxxx and P32C04Mxxx.

266

COMPATIBILITY AND PORTABILITY A

Porting an Application from RF\SAT to STARGATE™

Because the new radio communication library HDLRF.LIB is not compatible with the
previously existing ones (RF.LIB, NEWRF.LIB, RF1.LIB), an application program
written for RF/SAT based systems must be modified in order to take advantage of the
CSMA/CA protocol implemented for STARGATE™ based systems.

Once the differences of the libraries are well understood (see paragraph 4.1.6 "Radio
Frequency Communication Handler Functions” and the detailed function descriptions
in chapter 6 "Library Reference"), the modifications to be made are straightforward.

Keep in mind the following:

• The new file RADIO.H must be included. It contains new function prototypes,
data and constant definitions.
It is necessary to implement the radio opening session through a call to the
function rf_init(). This can be done once for all at start-up, for example
inside the event function apl_startup().

• The input transmission buffer in the new handler request function rf_hreqst()
is limited to 240 bytes. For ir_hreqst() this same limit is a lot larger (65000
bytes), but data must be organized in the buffer as separated records, each one
limited to 244 bytes. So, in previously existing RF applications, it is likely to find a
single call to ir_hreqst() to transmit an entire collection of records, while
STARGATE™ based applications must handle the transmission of one record at
a time. Note also that, due to the differences in the record limits (240 bytes for
rf_hreqst(), 244 bytes for ir_hreqst()), if the previously existing RF
application uses records longer than 240, the single record must be transmitted
in two steps.
The library HDLRF.LIB doesn’t use a global structure to exchange information
between the radio handler and the application program; instead, functions are
used. In particular, the status of the transaction is retrieved calling
rf_status(). The previously existing libraries poll the value of the field .stat
in the structure ir_answer.

• The event function rf_event() has the same meaning as ir_event(),
therefore a simple name substitution can be made.

• If data are expected from the host PC, Two Way transactions must be used
(setting the input parameter mode of rf_hreqst() to the value
RF_TWO_WAYS). Data must be read through a call to rf_read() when the
transaction has correctly terminated.

• Remember to always implement the handling of transaction termination due to
timeout by using the rf_hretry() function. If after a predefined number of

267

DS FOR FORMULA A

retries the transaction cannot be successfully terminated, it is suggested to close
the session through rf_close().

• The library HDLRF.LIB automatically handles the insertion event: it isn’t
necessary to call the function rf_habort() inside insertion_event().
Instead it is necessary to call ir_habort() in RF/SAT based applications.

• Remember to modify the linker command file LINK.CMD in order to specify the
HDLRF.LIB instead of RF.LIB or NEWRF.LIB or RF1.LIB.

In the directory Workdemo.005, in addition to the application example APL.C, the file
PORTING FROM RFSAT.C can be found which is intended to illustrate the changes
to be made in the source code when porting a program from RF\SAT to
STARGATE™ based systems. Comments containing the string “HDLRF:” mark the
critical points in the code.

268

ERROR REPORTING B

B ERROR REPORTING

The operating system carries out two main categories of checks:

- Terminal hardware functional tests

- software controls and checks

Hardware functional tests are carried out typically on first startup. They are described
in the section entitled "Initial Tests". There are, however, exceptions: for example, at
every Terminal startup, the residing bootstrap-loader program checks the application
program before giving up control. Or the Real Time Clock driver checks the
correctness of data read at every chip reading.

Software controls are based on rigorous checks of the input parameters passed to
the operating system functions contained in the libraries.

This has been devised to try to intercept, as much as possible, any programming
errors that may take place, even dynamically during the execution of the program to
facilitate the debugging phase of the application program.

The functions that run into blocking faults find them with the library function
fault(), described in the "Library Reference" section of this manual.

The Operating System thus conveys the faults, displaying the messages:

FAULT CODE for unrecoverable hardware errors

PRGM FAULT CODE for programming errors (for example: invalid paremeters
passed on input to a function).

The previous prompts are followed by a message having the following format:

PxxCyyMzzzz

where xx unequivocally identifies the library function that found the software or
hardware fault; xx is in fact a number that corresponds to the function identifier
(PROC_XXXX) which is explicitly declared in the genk.inc module.

Do not consider parameters yy and zzzz.

To debug an application program, the FAULT CODE, together with the information
on "When the problem takes place" or "Which event generates the problem", may be
useful to identify errors.

269

DS FOR FORMULA B

Example

88 = PROC_IIC_READCLOCK: probable failure of Real Time Clock.

FAULT CODE:
P88C01M0000

51 = PROC_WRITECLOCK: probable error in parameters passed to timer

writing function (notice how this prompt differs
from the previous one).

FAULT CODE:
P51C01M0000

36 = PROC_TEST_BANKSEL: bank selection error at startup: wrong RAM

configuration.

FAULT CODE:
P36C01M0000

FAULT CODE LIST:

Bootstrap Loader Fault Codes:

P21 (BL):

P21C01... the bootstrap loader didn't find a specific test pattern
written on the Flash (Flash error).

P21C02... the bootstrap loader detected a wrong Flash checksum
(Flash error).

P21C03... the bootstrap loader didn't start to execute the
application program (electrical problems).

P21C04... the bootstrap loader has received an application
program generated for another terminal (wrong
terminal).

270

ERROR REPORTING B

P22 (BL):

P22C01... the bootstrap loader wasn't able to upload the program
with the specified baudrate (communication error).
Enhanced Terminals only.

P23 (BL):

P23C01... the bootstrap loader wasn't able to erase the Flash
(Flash error).

P24 (BL):

P24CXX... the bootstrap loader wasn't able to fill the flash with 00
(Flash error). Standard Terminals only.

P25 (BL):

P25C01... the bootstrap loader wasn't able to write to the Flash
(error detected by bootstrap).

P25C02... the bootstrap loader wasn't able to write to the Flash
(data buffer too long).

P25C03... the bootstrap loader wasn't able to write to the Flash
(data buffer empty).

P25C04... the bootstrap loader wasn't able to write to the Flash
(timeout error detected by Flash).

P25C05... the bootstrap loader wasn't able to write to the Flash
(Flash not erased).

P26 (BL):

P26CXX... the bootstrap loader has detected an error in the Intel
Hex Code (error in comunications, i.e. wrong character,
or the bootstrap loader is not receiving an application
program).

P27 (BL):

P27C01... the bootstrap loader has detected an error in keyboard
hardware selection.

P52 (BL):

P52CXX... the bootstrap loader has detected a parity error in the
serial comunication.

271

DS FOR FORMULA B

Operating System fault codes:

P06 (OS):

P06C01... the Operating System detected an error during the
running of the user task tkapl().

P12 (OS):

P12C00... the Operating System detected an error in the
ir_hreqst() function call (application error - invalid
arguments).

P31 (OS tests):

P31C55... the Operating System has detected no variations of time
during the testing of the clock (clock fault).

P31C56... the Operating System found an error writing to the RAM
during the FIRST POWER UP.

P31C57... the Operating System detected a wrong serial line
configuration during the application restart.

P32 (OS tests):

P32C04... the Operating System has found an application program
generated for another terminal (wrong terminal).

P34 (OS tests):

P34CXX... the Operating System detected an error during the RAM
test (RAM fault).

P36 (OS tests):

P36CXX... error during the RAM test: selection of the RAM bank out
of range (RAM fault).

P37 (OS tests):

P37CXX... error during the RAM test: selection of the RAM bank out
of range (RAM fault).

P39 (OS scheduler):

P39CXX... the Operating System detected an error during a task
allocation.

272

ERROR REPORTING B

P40 (OS scheduler):

P40C01... the Operating System detected an error while changing
the status of a task to ready (non-existing task).

P41 (OS scheduler):

P41C01... the Operating System detected an error while changing
the status of a task to sleep (non-existing task).

P42 (OS scheduler):

P42C01... the Operating System detected an error during a task
status request (non existing task).

P43 (OS scheduler):

P43C01... the Operating System detected an error during a task
delay request (non-existing task).

P44 (OS):

P44C01... the Operating System detected an error during a timer
allocation request with an ID over the maximum allowed.

P45 (OS):

P45C01... the Operating System detected an error writing a timer
with an ID over the maximum allowed.

P45C02... the Operating System detected an error during a status
request of a non-existing timer.

P46 (OS):

P46CXX... the Operating System detected an error reading a
counter timer with an ID over the maximum number of
timers allocated (XX is the maximum number of timers
allocated).

P47 (OS):

P47CXX... the Operating System detected an error reading the
status of a timer with an ID over the maximum number of
timers allocated (XX is the maximum number of timers
allocated).

P48 (OS):

P48CXX... the Operating System detected an error in the ispechar()
function call (application error - invalid arguments).

273

DS FOR FORMULA B

P49 (OS):

P49C00... the Operating System detected an error during the
execution of exit_to_bl() function.

P49C01... the Operating System detected an error during the
execution of exit_to_rst() function.

P51 (OS):

P51CXX... the Operating System detected an error writing the clock
(clock error).

P53 (OS decoding):

P53CXX... the Operating System detected an error in the
dec_hreqst() function call (application error - invalid
arguments). Note: XX valid values are 01, 03 and 04 for
Pen Reader Terminals; 01, 02, 03 and 04 for Laser
Reader Terminals.

P55 (OS decoding):

P55C01... the decoding handler detected an error of the code
length over the maximum.

P55C02... the decoding handler detected an error of the read
codes over the number requested. Note: used only for
Laser Terminals.

P55C03... the decoding handler detected an error of the read
codes over the number requested. Note: used only for
Laser Terminals.

P55C04... the decoding handler detected an error during the
acquisition (in MACQSNGLCH mode).

P56 (OS decoding):

P56C01... a non-existing symbology was enabled.

P57 (OS decoding):

P57C01... a non-existing symbology was disabled.

P58 (OS decoding):

P58C01... a non-existing symbology checksum was enabled.

274

ERROR REPORTING B

P59 (OS decoding):

P59C01... a non-existing symbology checksum was disabled.

P60 (OS):

P60C00... the Operating System detected an error in the
tx_hreqst() function call (application error - invalid
arguments).

P63 (OS):

P63CXX... the Operating System detected an error in the
kb_hreqst() function call (application error - invalid
arguments).

P64 (OS):

P64CXX... the Operating System detected an error during the
reading of the keyboard.

P65 (OS):

P65C00... the Operating System detected an error during E2PROM
writing by the user.

P66 (OS):

P66C01... the Operating System detected an error in code banks
hardware selection.

P67 (OS):

P67C02... the Operating System detected an invalid password
during E2PROM reading.

P68 (OS):

P68C00... the Operating System detected an error in
setwakeup() function.

P88 (OS):

P88CXX... the Operating System detected an error writing data in
the IIC-BUS.

P99 (OS):

P99CXX... the Operating System detected an error reading data in
the IIC-BUS.

275

DS FOR FORMULA C

C BARCODE KEYPAD

SINGLE CHARACTERS

!$48! 0
$48

SPACE
$32 !$32!

!$49!

1
$49

$
$36 !$36!

!$50!

2
$50

%
$37 !$37!

!$51!

3
$51

*
$42 !$42!

!$52!

4
$52

+
$43 !$43!

!$53!

5
$53

,
$44 !$44!

!$54!

6
$54

-
$45 !$45!

!$55!

7
$55

.
$46 !$46!

!$56!

8
$56

/
$47 !$47!

!$57!

9
$57

:
$58 !$58!

276

BARCODE KEYPAD C

!$%%!

BACKSPACE
$%%

;
$59 !$59!

!$+-!

ENTER
$+-

?
$63 !$63!

!$65!

A
$65

O
$79 !$79!

!$66!

B
$66

P
$80 !$80!

!$67!

C
$67

Q
$81 !$81!

!$68!

D
$68

R
$82 !$82!

!$69!

E
$69

S
$83 !$83!

!$70!

F
$70

T
$84 !$84!

!$71!

G
$71

U
$85 !$85!

!$72!

H
$72

V
$86 !$86!

!$73!

I
$73

W
$87 !$87!

!$74!

J
$74

X
$88 !$88!

!$75!

K
$75

Y
$89 !$89!

277

DS FOR FORMULA C

!$76!

L
$76

Z
$90 !$90!

!$77!

M
$77

BACKSPACE
$%% !$%%!

!$78!

N
$78

ENTER
$+- !$+-!

!$97!

a
$97

o
$111 !$111!

!$98!

b
$98

p
$112 !$112!

!$99!

c
$99

q
$113 !$113!

!$100!

d
$100

r
$114 !$114!

!$101!

e
$101

s
$115 !$115!

!$102!

f
$102

t
$116 !$116!

!$103!

g
$103

u
$117 !$117!

!$104!

h
$104

v
$118 !$118!

!$105!

i
$105

w
$119 !$119!

!$106!

j
$106

x
$120 !$120!

278

BARCODE KEYPAD C

!$107!

k
$107

y
$121 !$121!

!$108!

l
$108

z
$122 !$122!

!$109!

m
$109

BACKSPACE
$%% !$%%!

!$110!

n
$110

ENTER
$+- !$+-!

PROCEDURES

!$+0! PROCEDURE A
$+0

!$+1! PROCEDURE B
$+1

!$+2! PROCEDURE C
$+2

!$+3! PROCEDURE D
$+3

!$+4! PROCEDURE E
$+4

!$+5! PROCEDURE F
$+5

!$+6! PROCEDURE G
$+6

!$+7! PROCEDURE H
$+7

279

DS FOR FORMULA C

!$+8! PROCEDURE I
$+8

!$+9! PROCEDURE J
$+9

ERASE ALL

WARNING!

This command destroys all data stored in memory.

!-$%+!

ERASE ALL
-$%+

280

DS for Formula

Development System Manual

©2001-2007 Datalogic Mobile S.r.l. 822000131 (Rev. A) 08/07

www.mobile.datalogic.com

Datalogic Mobile S.r.l.
Via S. Vitalino, 13
40012 Lippo di Calderara di Reno
Bologna - Italy
Telephone: (+39) 051-3147011
Fax: (+39) 051-3147561

World wide Sales Network
available from: www.mobile.datalogic.com/contacts

Volume 2

	CONTENTS
	LIBRARY REFERENCE
	LIBRARY FUNCTIONS
	LIBRARY VDISK

	A COMPATIBILITY AND PORTABILITY
	DS FOR FORMULA COMPATIBILITY
	APPLICATION PROGRAM PORTABILITY

	B ERROR REPORTING
	FAULT CODE LIST:

	C BARCODE KEYPAD
	SINGLE CHARACTERS
	PROCEDURES
	ERASE ALL

