
DS for Formula

Development System Manual

©2001-2007 Datalogic Mobile S.r.l. 822000131 (Rev. A) 08/07

www.mobile.datalogic.com

Datalogic Mobile S.r.l.
Via S. Vitalino, 13
40012 Lippo di Calderara di Reno
Bologna - Italy
Telephone: (+39) 051-3147011
Fax: (+39) 051-3147561

World wide Sales Network
available from: www.mobile.datalogic.com/contacts

Volume 1

Datalogic Mobile S.r.l.
Via S. Vitalino 13
40012 - Lippo di Calderara di Reno
Bologna - Italy

DS for Formula - Development System Manual

Volume 1

Software Version: 1.3 and later

Ed.: 07/2007

ALL RIGHTS RESERVED
Datalogic reserves the right to make modifications and improvements without prior notification.

Datalogic shall not be liable for technical or editorial errors or omissions contained herein, nor for incidental or
consequential damages resulting from the use of this material.

Product names mentioned herein are for identification purposes only and may be trademarks and or
registered trademarks of their respective companies.

© Datalogic S.p.A. 2001 - 2007

DATALOGIC S.p.A. Software License Agreement

This legal document is an agreement between you, the end user and DATALOGIC S.p.A. BY INSTALLING
THE SOFTWARE, YOU ARE AGREEING TO BECOME BOUND BY THE TERMS OF THIS AGREEMENT,
which includes the SOFTWARE LICENSE, LIMITED WARRANTY and ACKNOWLEDGMENT.

GRANT OF LICENSE. DATALOGIC grants to you the right to use one copy of the enclosed DATALOGIC
S.p.A., program (the "SOFTWARE") on a single terminal connected to a single computer (i.e.; with a single
CPU). You may not network the SOFTWARE or otherwise use it on more than one computer or computer
terminal at the same time.

COPYRIGHT. The SOFTWARE is owned by DATALOGIC S.p.A. or its suppliers and is protected by copyright
laws and international treaty provisions. Therefore, you must treat the SOFTWARE like any other copyrighted
material (i.e.; a book or musical recording) except that you may either (a) make one copy of the SOFTWARE
solely for backup or archival purposes, or (b) transfer the SOFTWARE to a single hard disk provided you
keep the original solely for backup or archival purposes. You may not copy the written materials
accompanying the software.

NON PERMITTED USES: Without the express permission of DATALOGIC S.p.A., you may not:
1. Use the software in a computer service business including rental, networking or time sharing software,

nor may you use it for multiple users, or multiple computer system applications in the absence of
individual network licenses with DATALOGIC S.p.A.

2. Use, Copy or modify, alter or transfer, electronically or otherwise, the software or documentation except
as expressly allowed in this agreement.

3. Translate, reverse engineer, de-assemble, de-compile or create derivative works based on the written
materials.

4. Sub-license or lease this program or its documentation.

LIMITED WARRANTY: This software and accompanying written materials are provided "as is" without
warranty of any kind. THE ENTIRE RISK AS TO THE RESULTS AND PERFORMANCE OF THIS
SOFTWARE IS ASSUMED BY YOU. SHOULD THE SOFTWARE PROVE DEFECTIVE IN USE, YOU (AND
NOT DATALOGIC OR ITS AGENTS) ASSUME THE ENTIRE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION OF DATA. FURTHER, DATALOGIC DOES NOT WARRANT, GUARANTEE OR
MAKE ANY REPRESENTATIONS REGARDING THE USE OF, OR THE RESULTS OF THE USE OF THE
SOFTWARE, IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, CURRENTNESS, OR
OTHERWISE AND YOU RELY ON THE SOFTWARE AND RESULTS AT YOUR OWN RISK.

DATALOGIC warrants to the original licensee that the CD-Rom on which the SOFTWARE is recorded is free
from defects in materials and workmanship under normal use and service for a period of ninety (90) days from
the date of delivery as evidenced by a copy of your receipt. DATALOGIC's entire liability and your exclusive
remedy shall be at DATALOGIC's option, replacement of the CD-Rom which shall be returned to
DATALOGIC with a copy of your receipt. If failure of the CD-Rom has resulted from accident, abuse or
misapplication of the product, then DATALOGIC shall have no responsibility to replace the product under this
warranty.

THE ABOVE IS THE ONLY WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE, THAT IS MADE BY DATALOGIC ON THIS DATALOGIC PRODUCT. IN NO
EVENT SHALL DATALOGIC OR ITS SUPPLIERS, NOR ANYONE ELSE WHO HAS BEEN INVOLVED IN
THE CREATION, PRODUCTION OR DELIVERY OF THIS PRODUCT, BE LIABLE FOR ANY DIRECT,
INDIRECT, CONSEQUENTIAL, OR INCIDENTAL DAMAGES WHATSOEVER (INCLUDING, WITHOUT
LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF
BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS) ARISING OUT OF THE USE, THE RESULTS
OF USE, OR INABILITY TO USE SUCH PRODUCT, EVEN IF DATALOGIC HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

ACKNOWLEDGMENT: You acknowledge that you have read this LICENSE and Limited Warranty,
understand them and agree to be bound by their terms and conditions. You also agree that the LICENSE and
Limited Warranty are the complete and exclusive statement between the parties and supersedes all other
communications between the parties relating to the subject matter of the LICENSE or the Limited Warranty.

iii

CONTENTS

Volume 1

1 GENERAL INFORMATION .. 1
1.1 Scope of the Manual ... 1
1.2 Description of the Development System ... 1
1.3 How This Manual is Organized ... 2

2 INSTALLATION AND STRUCTURE .. 3
2.1 Installing DS for Formula .. 3
2.2 Installing the Keil C51 Compiler and BL51 Linker ... 3
2.3 Development System Structure .. 4
2.3.1 Defining O.S. Environment Variables (Sysfiles.UPG) 6
2.3.2 Tools ... 8
2.3.3 EasySend™.. 9
2.3.4 DS Libraries and Customized KEIL Modules .. 10
2.3.5 Include and Header Files .. 12
2.3.6 F734, F732, F725, F660, F630 Folders .. 13

Examples .. 13
Work.org ... 14

3 DEVELOPING USER APPLICATION PROGRAMS 15
3.1 System Structure .. 15
3.1.1 Multitasking Operating System ... 15
3.1.2 Application Level... 16
3.1.3 Handler Level.. 16
3.1.4 Driver Level... 18
3.2 The Application Program as a State-divided Task 19
3.3 Start with an Example Program .. 21
3.3.1 Modifying Makefile .. 23
3.3.2 Modifying Link.cmd ... 24
3.4 Extended Memory Applications... 27
3.4.1 Special Extended Memory Application Issues .. 28
3.5 Using RAM Data ... 29
3.6 Terminal Autonomy... 29
3.7 State Resumption after Shut-Down... 30
3.8 Display Fonts .. 30

4 TERMINAL RESOURCE MANAGEMENT ... 35
4.1 Resource Management Tools ... 35
4.1.1 Terminal Status Control .. 35
4.1.2 Software Timers.. 42

iv

4.1.3 Decoder Handler Functions .. 43
4.1.4 Keyboard Handler Functions... 45
4.1.5 Serial Communication Handler Functions... 53
4.1.6 Radio Frequency Communication Handler Functions................................. 57

STARGATE™ based systems .. 57
RF/SAT based systems .. 61

4.1.7 E2PROM Functions .. 63
4.1.8 Clock Handler Functions... 64
4.1.9 RAM Functions ... 65
4.2 Summary of Event Functions .. 68

5 APPLICATION PROGRAM EXAMPLES ... 69
5.1 APL in Workdemo.001 .. 69
5.2 APL in Workdemo.002 .. 71
5.3 APL in Workdemo.003 .. 73
5.4 APL in Workdemo.004 .. 79
5.5 APL in Workdemo.005 .. 81

Volume 2

6 LIBRARY REFERENCE ... 83

A PORTABILITY AND COMPATIBILITY .. 262

B ERROR REPORTING... 269

C BARCODE KEYPAD .. 276

v

vi

GENERAL INFORMATION 1

1 GENERAL INFORMATION

1.1 SCOPE OF THE MANUAL

This manual has been written by Datalogic S.p.A. and accompanies the CD
containing the Development System software for the Formula Basic Line of
Terminals.

The manual is valid both for the Standard family - F734, F732, F725, F660, F630 and
for the Enhanced family - F734-E, F732-E, F725-E, F660-E.

It supplies information necessary to allow those who possess a good knowledge of
the C programming language to design and develop programs in full autonomy. It is
necessary that the users know the Keil Compiler and its specific parts for the
microcontroller of the Formula Basic Line.

For the program to work properly and to fully exploit the potential of the Formula
Basic Line of Terminals using the various libraries, you should read this manual
thoroughly.

It contains various practical examples, which are installed by the CD included in the
DS for Formula package. We recommend that you study these examples in order to
understand the programming methods adopted. This will also allow changes to be
made easier, for example, for those who have not taken part in the application's
design.

1.2 DESCRIPTION OF THE DEVELOPMENT SYSTEM

DS for Formula is a Development System created by Datalogic S.p.A. that allows the
user to design and to develop application programs for the Formula Basic Line of
Terminals in the C programming language.

These programs allow you to customize Terminal operation to meet all kinds of
needs.

DS for Formula is based on a Personal Computer IBM (or compatible) platform with
an MS-DOS operating system.

The choice of the C language means using the language of a wide variety of users,
obtaining a very highly efficient code, making the structured programming style
easier, while benefiting from a wide choice of data types to work with.

1

DS FOR FORMULA 1

DS for Formula uses the Keil C51 Compiler and BL51 Linker. This product has been
chosen for its excellent functionality and compatibility with C’s ANSI standard, and for
its very complete range of standard libraries that are compatible with those of the
most popular compilers for Personal Computers.

The Keil package is one of the best “dedicated” C tools for the microcontroller used in
the Formula Basic Line of Terminals.

1.3 HOW THIS MANUAL IS ORGANIZED

This manual is divided into two Volumes:

Volume 1

• Installation and Structure (chapter 2): describes the installation and structure
of the installed system files and application program examples

• Application Program Development (chapters 3, 4 and 5):

• describe an overview of application program development for Formula
Terminals under the Multitasking Operating System (chapter 3)

• details on the implementation of specific terminal resources (chapter 4)

• five example application programs to demonstrate programming methods
and strongly recommended as starting points for the development of your
application programs (chapter 5)

Volume 2

• Reference Library (Chapter 6): complete list of library functions

• Compatibility (appendix A): notes on compatibility with application programs
written using previous versions of Formula Development Systems

• Error Reporting (appendix B): a description of error reporting by the Operating
System and a list of errors

• Barcode Keypad (appendix C): special codes that can be used by your
application program

2

INSTALLATION AND STRUCTURE 2

2 INSTALLATION AND STRUCTURE

2.1 INSTALLING DS FOR FORMULA

Installing DS for Formula is very simple and straightforward. Proceed as indicated
below:

1 - make sure you have at least 3 MB of free hard-disk space on your PC

2 - insert the CD

3 - run DS for Formula x.xx.EXE

Some folders are created on the hard disk and all the files needed for the
Development System are copied to your PC.

CAUTION

The default path for the main folder is: "DL\DS_FOR_FORMULA";
the user can change the path during the installation phase but must
be sure not to use “space” characters in the folder names.

Once the procedure is complete, the user must define some Operating System
environment variables. For Windows 95, 98, and ME, the AUTOEXEC.BAT file
must be modified. For Windows NT, 2000, and XP, modifications are made
through a specific Dialogue box. Details are given in paragraph 2.3.1.

4 - Proceed by installing the Keil Compiler and Linker as indicated in paragraph 2.2.

CAUTION

If a previous version of the Development System was already
present, the installation program automatically overwrites this
directory. It is, however, still advised to make copies of the previously
developed source files before upgrading them.

2.2 INSTALLING THE KEIL C51 COMPILER AND BL51 LINKER

Carry out installation according to the Keil manual.

Installation is completely automatic except for the definition of the environment
variables to the PC's Operating System; these are, however, clearly specified. The
procedure is simple but must be followed very carefully, taking note of any errors
displayed on the video if the installation is not successful.

3

DS FOR FORMULA 2

It is important to remember that the Keil Compiler is protected by a hardware key to
be inserted in one of the Personal Computer parallel ports (without the key it is
impossible to compile your own application programs).

Refer to the original Keil manual for all details.

2.3 DEVELOPMENT SYSTEM STRUCTURE

After completing the installation, starting from the specified path (the default path is:
“DL\DS_FOR_FORMULA”), the following folders are created on the personal
computer:

• EASYSEND – this folder contains the Easysend utility program which allows
downloading to your Terminal from the Windows environment.

• INC – this folder contains Include, Header and Upgrade files (.INC, .H and .00).

• LIB – this folder contains the Development System library files (.LIB) and some
customized Keil modules (.OBJ).

• MANUAL – this folder contains this manual in electronic form.

• SYSFILE.UPG – this folder contains the file AUTOEXEC.UPG, intended to help
in defining the Operating System environment variables, which complete the
installation.

• TOOLS – this folder contains several .EXE utility files called by M.BAT during
compilation and by SEND.BAT during DOS downloading.

The batch file COMPILER.BAT can also be used to generate Assembler listings.

• UVISION2 – this folder contains application program examples developed under
the uVision environment for specific Formula products.

Moreover, the additional following folders contain some application program
examples for specific Formula products:

• F630

• F660

• F725

• F734

• F732

4

INSTALLATION AND STRUCTURE 2

Here is the entire tree of folders:

\ DS_for_FORMULA
 EASYSEND
 F734
 EXAMPLES
 Workdemo.001
 Workdemo.002
 Workdemo.003
 Workdemo.004
 Workdemo.005
 WORK.ORG
 F732
 EXAMPLES
 Workdemo.001
 Workdemo.002
 Workdemo.003
 WORK.ORG
 F725
 EXAMPLES
 Workdemo.001
 Workdemo.002
 Workdemo.003
 Workdemo.004
 Workdemo.005
 WORK.ORG
 F660
 EXAMPLES
 Workdemo.001
 Workdemo.002
 Workdemo.003
 Workdemo.004
 Workdemo.005
 WORK.ORG
 F630
 EXAMPLES
 Workdemo.001
 Workdemo.002
 Workdemo.003
 WORK.ORG
 INC
 KEIL_DONGLE_UTILITIES
 LIB
 MANUAL
 SYSFILES.UPG
 TOOLS
 uVISION2_Examples

Please note that examples 4 and 5 aren’t available for F732-E, F732 nor F630
terminals.

5

DS FOR FORMULA 2

2.3.1 Defining O.S. Environment Variables (Sysfiles.UPG)

The AUTOEXEC.UPG file located in the SYSFILE.UPG folder contains some
Operating System environment variables that must be defined in order to recognize
the various DS for Formula, Keil C51 Compiler and BL51 Banking Linker installation
directories.

The way these environment variables are defined depends on the Operating System.

♦ For Windows 95, 98, and ME:

Using any Text Editor, the commands from the AUTOEXEC.UPG file (shown in
the following table) are to be added to the AUTOEXEC.BAT file present in C:\.

Variable Definition Software

SET PATH=C:\KEIL\C51\BIN;%PATH%
SET C51LIB=C:\KEIL\C51\LIB
SET C51INC=C:\KEIL\C51\INC
SET TMP=C:\TMP (or other)

Keil C51 Compiler
and BL51 Banking
Linker

SET PATH=C:\DL\DS_for_Formula\TOOLS;%PATH%
SET DS_for_Formula=C:\DL\DS_for_Formula DS for Formula

These variables must be defined using the Destination Folders chosen during
setup of the Keil C51 Compiler, BL51 Banking Linker and DS for Formula. The
default values are C:\KEIL and C:\DL\DS_for_Formula.

Any conflicts with the pre-existing configuration must be checked. In particular,
environment variables relative to previous Development Systems (DS734A,
DS725, DS660 and DS630) and Keil C51 Compiler and L51 Linker must be
eliminated or commented:

Variables to Eliminate (or comment) Software

rem SET PATH=C:\C51\BIN;%PATH%
rem SET C51LIB=C:\C51\LIB
rem SET C51INC=C:\C51\INC

Keil C51 Compiler
and L51 Linker

rem SET PATH=C:\DSxxx\TOOLS;%PATH% previous DSxxx

NOTE

Remember that modifications to the AUTOEXEC.BAT file take effect
only after the PC is rebooted.

6

INSTALLATION AND STRUCTURE 2

♦ For Windows NT, 2000, and XP:

For these Operating Systems, modifications are made through a specific
Dialogue box from: Control Panel->System->Advanced->Environment Variables.
By choosing New (or Edit to modify the PATH), set the following:

Variable Value Software

PATH
C51LIB
C51INC
TMP

C:\KEIL\C51\BIN;
C:\KEIL\C51\LIB
C:\KEIL\C51\INC
C:\TMP (or other)

Keil C51 Compiler
and BL51 Banking
Linker

PATH
DS_for_Formula

C:\DL\DS_for_Formula\TOOLS;
C:\DL\DS_for_Formula DS for Formula

These variables must be defined using the Destination Folders chosen during
setup of the Keil C51 Compiler, BL51 Banking Linker and DS for Formula. The
default values are C:\KEIL and C:\DL\DS_for_Formula.

Any conflicts with the pre-existing configuration must be checked. In particular,
environment variables relative to previous Development Systems (DS734A,
DS725, DS660 and DS630) and Keil C51 Compiler and L51 Linker must be
eliminated:

By choosing Delete (or Edit to modify the PATH), eliminate the following:

Variable Value Software

PATH
C51LIB
C51INC

C:\C51\BIN;
C:\C51\LIB
C:\C51\INC

Keil C51 Compiler
and L51 Linker

PATH C:\DSxxx\TOOLS; previous DSxxx

Installation Problems

Problems or faults may occur in the installation phase. Below is a short list of the
most likely problems.

• Conflicts due to the coexistence of other compilers installed on the Personal
Computer.

• Conflicts in the Autoexec.bat due to changes made by the C compiler and the
Development System.

7

DS FOR FORMULA 2

• Command buffer too small (path too long, too many system commands installed
etc.).

• For Windows 95, 98, and ME, modifications to AUTOEXEC.BAT not effective
until PC reboot.

2.3.2 Tools

DS for Formula makes compiling and transmitting applications to your Terminal
easier by correctly managing (calling) some necessary utility components in the tools
directory through the M.BAT and SEND.BAT files, which are located in the Work.org
directory.

NOTE

It is NOT advised to use the utility tools manually. See par. 3.3 for the
procedure using M.BAT and SEND.BAT.

The following utilities in the TOOLS folder are called by M.BAT:

PUTDATE - inserts the time and date of the system at compilation launch, into
the module DEVDATE.C. They are made available, at the application program
level, in the global structure develop_date.

NOTE

Remember that the user must not manually alter the DEVDATE.C
module stored in the directory \LIB.

MAKE - is used to selectively compile only the source files modified by the user
or those that have not yet been compiled.

DSCHECK - calculates a checksum and stores it in the application executable file.

The following utilities in the TOOLS folder are called by SEND.BAT:

DL - allows DOS downloading of the application executable file DS_OUT.HEX
from the Personal Computer to the Terminal; the communication parameters are
established automatically. Please see the User's Manual for details about
connecting your Formula Terminal to the personal computer.

8

INSTALLATION AND STRUCTURE 2

WAITDSEC - stops execution of the personal computer for the number of tenths
of a second specified in the argument. This utility is used to wait 2 seconds
between downloading different banks of an EXTENDED MEMORY application.

The following utility is not called by any batch file but can be run directly from the
TOOLS folder.

COMPILER.BAT - This batch file is useful to compile a single source file. The
C51 Compiler is invoked with the CODE option to also generate Assembler
listings. For example, compiler apl compiles the file APL.C and generates the
list file APL.LST.

2.3.3 EasySend™

The EasySend™ utility program allows software downloading to any Formula Basic
Line Terminal from the Windows environment as an alternative to DOS downloading
with SEND.BAT.

It is fully functional for all Windows environments (95/98/ME/2000/NT and XP).

EasySend™ is compatible with the old hardware platforms (i.e. F734/B) as well as
with the new E-Series Terminals and has been designed to send both single-bank
and multi-bank (for E-Series Terminals) application programs to any Formula Basic
Line Terminal in a very easy, fast and professional way.

EasySend™ allows COM port selection and supports the fastest transfer speed
possible according to the Bootloader software version of the particular Terminal. For
older Terminals with Bootloader V5R1 or earlier, the transfer takes place at the fixed
rate of 19200 Baud (even if another rate is set). For newer Terminals with Bootloader
V6R1 or later, communication can be set up to the maximum rate of 57600 Baud.

9

DS FOR FORMULA 2

2.3.4 DS Libraries and Customized KEIL Modules

The LIB folder contains the following files:

Common libraries to the entire Formula Basic Line:

ABSVCT.LIB interrupt vector allocation
DRVGEN.LIB peripheral drivers
PUTCHAR.LIB display driver
DRVCOM.LIB serial communication driver
MAINDS.LIB Operating System high level library

STARTUP.OBJ customized Keil start-up module
INITEND.OBJ customized Keil initialization module
L51_BANK.OBJ customized Keil EXTENDED MEMORY module

Product dependent libraries:

TERM734.LIB F734-E and F734 identification
TERM732.LIB F732-E and F732 identification
TERM725.LIB F725-E and F725 identification
TERM660.LIB F660-E and F660 identification
TERM630.LIB F630 identification
READ6XX.LIB optical pen reader driver for F660-E, F660, F630
HDLBC7XX.LIB laser reader handler for:

F734-E, F734, F732-E, F732, F725-E, F725
HDLBC6XX.LIB optical pen reader handler for F660-E, F660, F630
HDLKB73X.LIB keyboard handler for F734-E, F734, F732-E, F732
HDLKB725.LIB keyboard handler for F725-E, F725
HDLKB660.LIB keyboard handler for F660-E, F660
HDLKN630.LIB keyboard handler for F630

10

INSTALLATION AND STRUCTURE 2

Application dependent libraries:

DEC.LIB complete barcode decoding library
DEC_NOZ.LIB barcode decoding without ZELLWEGER support
DEC_NOIZ.LIB barcode decoding without Delta A IBM and without

ZELLWEGER
DECNOIMZ.LIB barcode decoding without Delta A IBM, without MSI and

without ZELLWEGER

HDLCOM00.LIB serial communication handler, frame driven
HDLCOM10.LIB serial communication handler, frame driven w/ Xon/Xoff
HDLCOM20.LIB serial communication handler, character driven

E2P.LIB complete E2PROM driver. DO NOT USE with F660.
E2PNOUSR.LIB E2PROM driver with dummy user functions

(Usr_EraseE2prom(), Usr_ReadE2prom(),
Usr_WriteE2prom()). DO NOT USE with F660.

E2PCONSN.LIB E2PROM driver with dummy user functions
(Usr_EraseE2prom(), Usr_ReadE2prom(),
Usr_WriteE2prom()) and without test of checksum on
reading the default contrast and serial number. DO NOT USE
with F660.

EMPTYE2P.LIB dummy E2PROM driver. Use only with F660.

HDLCK.LIB complete clock handler. DO NOT USE with F660-E, F660,
F630.

HDLCKNWU.LIB clock handler with dummy wakeup functions (setwakeup(),
checkwakeup()).

HDLRF.LIB new radio communication handler when using the

STARGATE™ Radio Base Station
RF.LIB radio communication handler when using the RF Satellite
NEWRF.LIB radio communication handler when using the RF Satellite

with version V5R0 or later.
RF1.LIB radio communication handler when using F951/RF as a

Satellite.
EMPTYRF.LIB dummy radio communication. Used to save memory space

for non-RF terminal applications.

11

DS FOR FORMULA 2

READ7XX.LIB standard laser reader driver for:
F734-E, F734, F732-E, F732, F725-E, F725

READ7XXF.LIB extended distance (far) laser reader driver for:
F734-E, F734, F732-E, F732, F725-E, F725

NOTE

Although these drivers are product dependent (for F7xxx Terminals),
they are also application dependent. READ7XXX.LIB allows faster
decoding while READ7XXXF.LIB is slower but offers a 20% increase
in the max. reading distance of the Terminal.

VDISK.LIB banked RAM driver (optional).
NOCLRAMB.LIB does not allow memory testing (and therefore cancellation)

of banked RAM at startup (optional).

2.3.5 Include and Header Files

The INC folder contains some Include and Header files useful when writing an
application program.

Operating System constants are defined to make your program easily readable and
maintainable. Below is a short description of the files available to the programmer:

LIBRARY.H Development System function prototypes
ACQDEF.H Acquisition data structures
GENK.INC Common use constants
IOGENK.INC Input/Output constants
ACQK.INC Acquisition constants *
HANSWER.H Handler answering global structures
VDISK.H VDISK.LIB function prototypes
TYPEDEF.INC VDISK.LIB related constants
UPG630R1.00 Include to compile an APL.C written for DS-630
UPG660R1.00 Include to compile an APL.C written for DS-660

* The file ACQK.INC also contains constants to be used for special terminals.

12

INSTALLATION AND STRUCTURE 2

2.3.6 F734, F732, F725, F660, F630 Folders

These folders contain files useful to develop application programs for all the products
of the Formula Basic Line, in both their standard or enhanced version. (F630 only
exists in standard version).

The structure is the same for all the products:

• a working directory template: WORK.ORG

• a folder containing some example application source files: EXAMPLES.

FXXX
 EXAMPLES
 Workdemo.001
 Workdemo.002
 Workdemo.003
 Workdemo.004 (not for F732-E, F732 nor F630 terminals)
 Workdemo.005 (not for F732-E, F732 nor F630 terminals)
 WORK.ORG

NOTE

See the procedure in par. 3.3 for details on starting program
devlopment using these examples.

Examples

The EXAMPLES folder contains up to five application program examples. For each of
these examples, the APL.C source file is the same from one product to another.

Examples 4 and 5 (radio communications) are not valid for F732 nor F630 terminals.

All the application program examples are explained in detail in chapter 5.

13

DS FOR FORMULA 2

Work.org

WORK.ORG is the working directory template. We recommend that the user starts
by copying the entire WORK.ORG content into a new application folder as outlined in
the procedure in par. 3.3.

M.BAT is a batch file used for generating the executable application file.

SEND.BAT is a batch file used for downloading the application file from DOS onto
the Terminal.

EASYSEND.BAT is a batch file used for downloading the application file from the
EasySend™ Windows-based utility onto the Terminal.

NOTE

We strongly suggest that you DO NOT modify the content of these
batch files.

EM_IBANK.C is necessary only for application programs that span more than one
bank of FLASH (also called EXTENDED MEMORY applications, see par. 3.4).

FONT.C and NEWFONT.C contain the font character tables. In the first one, only the
most commonly used characters are coded, from decimal 32 (‘space’ character) to
the character defined as decimal 160. In NEWFONT.C, an extended ASCII set is
present (from decimal 32 (‘space’) to 255), therefore this table is twice the size of the
previous one. Please remember, particularly when writing your application for
Terminals without extended memory, that if the application program is too large, you
can choose to use the smaller font table or you can define your own table. See par.
3.8.

MAKEFILE is the command file for the MAKE.EXE program and must be modified
depending on the application; see par. 3.3.1.

LINK.CMD and LINK2.CMD are pre-written command files for the Linker, necessary
to create the application executable file when the code spans 1 or more banks of
FLASH. These files must be modified depending on the application; see par. 3.3.2.

14

DEVELOPING USER APPLICATION PROGRAMS 3

3 DEVELOPING USER APPLICATION PROGRAMS

3.1 SYSTEM STRUCTURE

The following diagram shows how the system is organized and the interaction of the
various programming levels.

APPLICATION PROGRAM

FORMULA TERMINAL HARDWARE

HANDLER HANDLER HANDLER

DRIVERDRIVERDRIVER

APPLICATION
LEVEL

HANDLER
LEVEL

DRIVER
LEVEL

HARDWARE
LEVEL

MULTITASKING
OPERATING

SYSTEM

3.1.1 Multitasking Operating System

The Operating System is Multitasking, non pre-emptive and with scheduled priority.
The scheduler controls all the allocated tasks and, on the basis of their status and
priority, runs the appropriate tasks.

The application itself must be implemented through tasks, see paragraph 3.2.

To this end, DS for Formula pre-allocates four application tasks, each associated to a
fixed identification code which can be found in GENK.INC.

In addition to the pre-defined application tasks, It is possible for the user to
implement and allocate new tasks with associated priority.

The resources available to the programmer are organized into 3 levels or layers:

• Application Level

• Handler Level

• Driver Level

15

DS FOR FORMULA 3

Each level controls the ones below it, thereby creating a hierarchical structure as
shown in the previous diagram.

Like the Application Level, the Handler Levels are implemented by means of tasks.
However, the user doesn't have to be concerned about their multitasking
management since the Operating System does this automatically.

3.1.2 Application Level

The Application Level or layer is hierarchically the highest.

The source application program, which handles the application level, in most cases is
contained in a single file, conventionally called APL.C, but can reside in more than
one file, see par. 3.4. For the sake of brevity, in the following we will refer only to
APL.C.

The source application program is the only program created by the DS for Formula
user to implement his own application.

To fully exploit the terminal resources, the programmer can use the available
LIBRARY and EVENT functions. See chapter 4 for details.

The application program is a concise easy-to-read program which determines the
acquisition sequences and the data flow and destinations at the highest level.

The programmer already acquainted with "C" language can therefore concentrate
exclusively on the application part and, in a short time, will be able to create his first
executable application program.

Using DS for Formula, even the non-expert programmer can easily handle the most
common data collection operations as well as run very complex and dedicated tasks.

Only a few rules must be kept in mind when writing an application program that
exploits a multitasking environment. See paragraph 3.2 for some simple but
important suggestions.

3.1.3 Handler Level

The second layer, i.e. the middle one, supervises and handles complex operations
using the drivers available, and is called the Handler Level.

Complex operations most commonly mean acquisition sequences, which imply the
handling of many elementary events at indeterminate times in order to acquire
information from the external environment.

16

DEVELOPING USER APPLICATION PROGRAMS 3

The handler level carries out the following functions:

• activates, deactivates and configures suitable drivers

• handles the elementary calls from/to the driver

• checks the data acquired on the basis of pre-established characteristics

• checks progress of the acquisition process in time

• checks the end of the acquisition process

• handles driver derived errors

The handler level is managed by handlers which have been designed to relieve the
application program of the main repetitive operations. Thus the application is able to
hold a high level dialogue of the following type with the lower layers:

• request to the handler for the acquisition elements required

• reply from the handler indicating end of acquisition (correct or not valid) with
transfer of the data required to global structures

The upper (Application) level manages the single handler by means of only two
function calls, one for the activation of the handler, the other for its deactivation. The
handler configuration must be written in a data structure that is passed on input to the
activation function; another global data structure permits checking the state and the
acquisition result of the handler; these two data structures are homogeneous for all
the handlers.

The handler level independently handles the activation request received from the
application program, signaling the end of the process by means of a status flag; the
application program can then carry out other functions simultaneously with the
acquisition process.

The handler level therefore saves the upper level from dealing with low level events
and their timing thus reducing the workload and simplifying and standardizing the
data exchange level.

A typical acquisition sequence managed by a handler, for example, is the reading of
a barcode that implies many elementary operations:

• activation key polling

• activation of laser scanner element

• control of maximum checking time

• display of several characters on the graphic display as a prompt message

• handling of the graphic display icons

17

DS FOR FORMULA 3

• activation of the decoding driver

• decoding of the barcodes in a string

• checking of the code read according to pre-established characteristics (length,
code type, character type)

• checking and handling of the Barcode Keypad

• construction of the string and checking of the end of the acquisition process in
the case of single character input (from the Barcode Keypad)

• laser scanner element switch-off

• de-activation of the decoding driver

3.1.4 Driver Level

The lowest layer, which controls the Formula Terminal hardware and runs
elementary operations, is called the Driver Level.

The driver functions are available at driver level. These functions have been
designed to perform one single elementary operation without interfering with the
others and to optimize execution times.

These are available at the upper levels to run complex functions.

Some of the most common driver functions are listed below:

• activation (hardware programming) of the serial port

• transmission of a single character by the serial port

• reception of a single character by the serial port

• Terminal switch-off

• reading of battery status

• reading of Terminal/transceiver status (whether placed on transceiver or not)

• reading of the keys

• clock reading and writing

• buzzer control

• RAM bank selection

• Read and write E2PROM (not present in F660)

18

DEVELOPING USER APPLICATION PROGRAMS 3

3.2 THE APPLICATION PROGRAM AS A STATE-DIVIDED TASK

The main component of the application program is a pre-defined task named
tkapl().

NOTE

In this manual, pre-allocated task function names will be written in
italics to distinguish them from the library functions.

This task manages the process of acquisition, storing and communication of data;
moreover, the task manages the user interface and interacts with the event functions
invoked by the Operating System.

In addition to tkapl(), three other pre-defined application tasks are available to the
programmer.

void tkuserapl1(void)

void tkuserapl2(void)

void tkuserapl3(void)

All four tasks are pre-allocated by the Operating System and must be implemented in
APL.C.

We suppose here that the application is organized into one task only, but all the
considerations also remain valid when using more than one task (pre-allocated or
newly user-defined).

In order to avoid that the entire Operating System is slowed down or even blocked, it
is essential that the application task being executed should return control to the
scheduler as frequently as possible. To this end, because control is given back to the
Operating System when the task function returns, the task must be organized as a
state-divided function; as you can see in the example applications, the state can be
represented by a variable.

For convenience the single states are "cases" of a "switch". At any rate this logic can
be implemented using other programming methods.

Every state determines which will be the next state or states to be executed thereby
determining the flow of the program. Any conditional tests may determine different
program flows according to a set of conditions.

19

DS FOR FORMULA 3

This programming method affords considerable advantages:

- the program evolves "longitudinally" and it is therefore more legible than a
program with subseqent conditional tests (if..else)

- the programmer does not have to test all the conditions, but only those
contemplated for that state

- the program is divided in small portions that return control to the scheduler, as
contemplated by the Operating System; thus other tasks may be executed

- delays, often used for screen displays or other functions, are very handy with a
call to dlytsk()

The programmer can control the task execution flow by means of simple requests to
the Operating System using the following functions:

slptsk()

rdytsk()

dlytsk()

rqstsk()

statsk()

The task may assume the following states:

INITSK task state at system initialization;

SLEEPTSK sleep state; the task is not run;

READYTSK ready state; the task is run as soon as possible;

DELAYTSK delay state; the task will be run after a delay;

EXECTSK execution state; the task is run by the scheduler.

These functions are described in detail in chapter 6 ”Library Reference”.

20

DEVELOPING USER APPLICATION PROGRAMS 3

To summarize, below are a number of simple rules that the programmer must follow
when implementing a source application program:

- The application task should be organized as a state-divided function.

- The programmer must take care not to create either routines in the
program that last long, or endless loops.

- The application task, like any other task, must always return control to the
scheduler at the end of the task; that is, the return instruction must be
issued.

3.3 START WITH AN EXAMPLE PROGRAM

Writing an application program for the Formula Basic Line of Terminals requires
managing two sets of files:

• ‘C’ source files; the files APL.C and FONT.C will always be present; if writing an
EXTENDED MEMORY application, EM_IBANK.C will also be present.

• Two command files, MAKEFILE and LINK.CMD, for compiling and linking the

application with the DS for Formula libraries.

Both these sets of files can be modified using a text editor.

NOTE

We strongly recommend that the user begins developing the
application starting from one of the example applications in chapter 5
and whose source files can be found in the FXXX\EXAMPLES folders.

21

DS FOR FORMULA 3

To modify an example application, please follow these steps:

1) Under the Folder of your Terminal, create your own working directory with a
meaningful name. For example:

FXXX
 EXAMPLES
 Workdemo.001
 Workdemo.002
 Workdemo.003
 Workdemo.004
 Workdemo.005
 MY_APPLICATION1
 MY_APPLICATION2
 WORK.ORG

We suggest that you NOT modify the WORK.ORG and EXAMPLE folders
directly.

2) Copy the entire WORK.ORG content into your newly created directory.

3) Copy all the files from the applicable Workdemo.00x directory into your newly
created directory.

4) Start modifying the two sets of files for your needs (see pars. 3.3.1, 3.3.2 and
3.4).

5) Run M.BAT to generate the executable file(s) with the pre-defined names
DS_OUT.HEX (for single-bank applications), DS_OUT.H00, .H01 etc. (for multi-
bank applications). These files are in Intel Hex format. The executable file and
some report files (*.LST and DS_OUT.M51) are created in the working directory.

NOTE

If a previous release of DSxxx or DS for Formula was installed, delete
the TMP directory before recompiling, otherwise the new libraries
won’t be used.

6) Download the executable application file to the Terminal. This can be done by

running EASYSEND.BAT, which uses the EasySend™ Windows-based utility,
or from DOS using SEND.BAT.

CAUTION

While the download is running, DO NOT execute M.BAT.

22

DEVELOPING USER APPLICATION PROGRAMS 3

NOTE

Portability of the applications written for F630 and F660 terminals
under older Development Systems (DS-660, DS-630) is guaranteed by
including the files UPG630R1.00 (for F630) or UPG660R1.00 (for
F660) inside the old APL.C module (see par. 2.3.5).

Using more than one application source file

The programmer can write his application dividing the source code between more
than one module; for example, he could add an APL2.C to the APL.C. To compile
and link the new file, he will have to update MAKEFILE and LINK.CMD (see pars.
3.3.1 and 3.3.2).

3.3.1 Modifying Makefile

MAKEFILE is the command file for the utility MAKE.EXE. In MAKEFILE the source
files to be compiled are listed, together with their dependencies on other files.

MAKE.EXE is used to selectively compile only the source files modified by the user
or those that have not yet been compiled.

Example:
Let’s suppose that the application program is subdivided into four files. The newly
introduced ones are named APL2.C, APL3.C and APL4.C.

To compile these files, it is necessary to make the following modifications to
MAKEFILE:

SRCFILES=APL.OBJ APL2.OBJ APL3.OBJ APL4.OBJ EM_IBANK.OBJ

Moreover, supposing that:

• all the application files include COMM_INC.H
• APL.C includes APL_INC.H
• APL2.C includes APL2_INC.H
• APL3.C includes APL3_INC.H
• APL.4C includes APL4_INC.H

23

DS FOR FORMULA 3

The following dependencies must be added:

APL.OBJ: COMM_INC.H\
 APL_INC.H

APL2.OBJ: COMM_INC.H\
 APL_INC2.H

APL3.OBJ: COMM_INC.H\
 APL_INC3.H

APL4.OBJ: COMM_INC.H\
 APL_INC4.H

Note that the character ‘\’ is used as a line break to continue the list of dependencies
over more than one line.

3.3.2 Modifying Link.cmd

LINK.CMD is the command file for the Linker. This file can have two different
structures, depending on the number of Flash banks spanned by the application; in
both cases, the command is divided into lines (separated by the ‘&’ character) to
make it easier to read and understand the different components:

first line: application source files

second line: application dependent DS libraries

third line: Terminal dependent DS libraries

fourth, fifth and sixth lines: common DS libraries, character font table
and variable initialization modules

seventh line:output file name and linker options

* eighth line: allocation of character font table and variable initialization

* ninth line: space optimization command

* Only present in multi-bank applications.

24

DEVELOPING USER APPLICATION PROGRAMS 3

The content of single-bank application files (LINK.CMD), and two-bank application
files (LINK2.CMD) are presented here, both files can be found in FXXX\WORK.ORG:

Single-Bank Application (example):
APL.OBJ, &
DEC.LIB, HDLCOM00.LIB, E2P.LIB, HDLCK.LIB, HDLRF.LIB, READ7XX.LIB, &
HDLBC7XX.LIB, HDLKB73X.LIB, TERM734.LIB, &
MAINDS.LIB, DRVGEN.LIB, DRVCOM.LIB, DEVDATE.OBJ, &
ABSVCT.LIB, STARTUP.OBJ, &
PUTCHAR.LIB, FONT.OBJ, INITEND.OBJ &
TO DS_OUT.COM ixref ramsize(256) NOOVERLAY &
CODE(?CO?FONT(4000H), ?C_INITSEG, ?C_INITSEGEND)

Two-Bank Application (example):
BANK1{APL.OBJ}, &
BANK0{ EM_IBANK.OBJ, DEC.LIB, HDLCOM00.LIB, E2P.LIB, HDLCK.LIB, HDLRF.LIB, READ7XX.LIB, &

HDLBC7XX.LIB, HDLKB73X.LIB, TERM734.LIB, &
MAINDS.LIB, DRVGEN.LIB, DRVCOM.LIB, DEVDATE.OBJ}, &

COMMON{ABSVCT.LIB, STARTUP.OBJ, L51_BANK.OBJ}, &
BANK1{PUTCHAR.LIB, FONT.OBJ, INITEND.OBJ} &
TO DS_OUT.ABS BANKAREA(4000H,0FFFEH) ixref ramsize(256) NOOVERLAY &
BANK1(?CO?FONT(4000H), ?C_INITSEG, ?C_INITSEGEND) &
BANK0(?CO?CRCCALC(4000H), ?CO?HWUTIL, ?CO?ICON, ?CO?HDLKB73X)

See also par. 3.4 about the EXTENDED MEMORY.

CAUTION

The Keil BL51 Banking Linker requires all command files, both
single- and multi-bank files, be named LINK.CMD. Therefore
LINK2.CMD must be renamed to LINK.CMD.

NOTE

Only the first and second lines of the LINK.CMD files should be
modified according to your application. The remaining lines and
structure must be left unchanged.

In the first line, it is possible to add source files: as in the example in par. 3.3.1,
where APL2.C, APL3.C and APL4.C were added. The first line must be modified this
way:

APL.OBJ, APL2.OBJ, APL3.OBJ, APL4.OBJ, &

25

DS FOR FORMULA 3

In the second line, you must specify one and only one of the DS libraries from
each of the categories listed below:

Decoding Library: DEC.LIB, DEC_NOZ.LIB, DEC_NOIZ.LIB, DECNOIMZ.LIB
(see par. 4.1.3)

Serial Communication Library: HDLCOM00.LIB, HDLCOM10.LIB,
HDLCOM20.LIB (see par. 4.1.5)

E2PROM Library: E2P.LIB, E2PNOUSR.LIB, E2PCONSN.LIB, EMPTYE2P.LIB
(see par. 4.1.7)

Clock Library: HDLCK.LIB, HDLCKNWU.LIB (see par. 4.1.8)

RF Communication Library: HDLRF.LIB, RF.LIB, NEWRF.LIB, RF1.LIB,
EMPTYRF.LIB (see par. 4.1.6)

The result of compiling the application program sources together with the Operating
System libraries is a set of code segments. These segments must be linked together
to generate the executable file which can be downloaded into the Flash.

Addresses and dimensions of the various segments can be found in DS_OUT.M51,
the Linker Listing file.

As for the overall dimension of the program, the user must pay attention to the
following:

- Standard Terminals (F734, F732, F725, F660 and F630): the application

program must not exceed 64 KBytes. If the application program overflows, the
user can try to shrink it by linking some of the reduced libraries (see par.
2.3.42.3.3).

- Enhanced Terminals (F734-E, F732-E, F725-E and F660-E): the user has 8

banks of 64 Kbytes available; so the program can be divided into pieces whose
number is not greater than 8 and whose dimensions are not greater than 64
Kbytes. If one of the pieces overflows, the user can try to redistribute the code
using more banks.

CAUTION

The dimension of the Operating System code segments might be
modified in future releases, so the effectiveness of the distribution of
code made with this version of DS for Formula is not guaranteed for
future releases.

26

DEVELOPING USER APPLICATION PROGRAMS 3

3.4 EXTENDED MEMORY APPLICATIONS

The EXTENDED MEMORY is available only for Enhanced Terminals (F734-E,
F732-E, F725-E and F660-E).

EXTENDED MEMORY programming permits writing application programs that can
span as many as eight 64-Kbyte banks of Flash memory. To this end it is also
necessary to use the Keil Banking Linker BL51 (the older L51 doesn’t handle
banking).

Banking an application program means dividing the code in pieces, each of which
must fit into a single 64-Kbyte bank; this division implies the necessity of bank
switching during runtime.

In every single bank a common area is reserved. This common area contains: the
Keil Standard C library, the bank switching module L51_BANK.OBJ, the interrupt
allocation vector, and the application start module STARTUP.OBJ.

BL51 recognizes “intrabank” functions, which are those functions implemented on
one bank and called from another. The intrabank function list can be found in the
linker report file DS_OUT.M51.

The only limitation of BL51 is that it isn’t capable of recognizing as intrabank
functions, those that are called through a pointer variable. To solve this problem, the
programmer has to implement calls to these functions inside
intrabank_procedures(), which is in the file EM_IBANK.C. The function
intrabank_procedures() isn’t meant to be executed, it simply makes the
procedures called inside it visible to the linker. The EM_IBANK.C file must always be
compiled and linked, even if intrabank_procedures() is empty.
Please note that there are some functions that are called by the Operating System
through a pointer variable; they are those whose pointer is passed on input to the
following library functions:

rqtim()
tx2_hreqst()
rqstsk()
dec_hcnfg0()

CAUTION

If a function called from another bank through a variable pointer isn’t
called inside intrabank_procedures(), runtime behavior will be
unpredictable when accessing this function.

27

DS FOR FORMULA 3

When compiling and linking for extended memory pay attention to the following:

♦ MAKEFILE: in the SRCFILES list, EM_IBANK.OBJ must be present (default).

♦ EM_IBANK.C: this file contains the intrabank_prodedures() function,

where intrabank functions not apparent to the linker must be called.

3.4.1 Special Extended Memory Application Issues

In special cases very complex applications may require other modifications to the
Linker file.

LINK.CMD has a particular structure which specifies the subdivision of the
application modules between the banks and the common area.

The modules EM_IBANK.OBJ and L51_BANK.OBJ must be present and reside in
bank 0.

Linker commands are present to allocate the character font table and variable
initialization modules, and to optimize program space. These commands must
allocate to exactly the same address as the end of the common area (default:
4000H). In addition, the bank number where these modules and commands reside
must be the same as the bank number for their allocation, that is the bank number of
line 8 must correspond to the bank number of line 6.

Two-Bank Application (example):
BANK1{APL.OBJ}, &
BANK0{ EM_IBANK.OBJ, DEC.LIB, HDLCOM00.LIB, E2P.LIB, HDLCK.LIB, HDLRF.LIB, READ7XX.LIB, &

HDLBC7XX.LIB, HDLKB73X.LIB, TERM734.LIB, &
MAINDS.LIB, DRVGEN.LIB, DRVCOM.LIB, DEVDATE.OBJ}, &

COMMON{ABSVCT.LIB, STARTUP.OBJ, L51_BANK.OBJ}, &
BANK1{PUTCHAR.LIB, FONT.OBJ, INITEND.OBJ} &
TO DS_OUT.ABS BANKAREA(4000H,0FFFEH) ixref ramsize(256) NOOVERLAY &
BANK1(?CO?FONT(4000H), ?C_INITSEG, ?C_INITSEGEND) &
BANK0(?CO?CRCCALC(4000H), ?CO?HWUTIL, ?CO?ICON, ?CO?HDLKB73X)

CAUTION

The Keil Standard C library and all the constants defined in the
application program, are in the common area. Should a common
area overflow error be reported, the default common area dimension
of 4000H must be enlarged. In this case both the character font table
and variable initialization module allocation, and program space
optimization addresses must also be set to the new address value.

28

DEVELOPING USER APPLICATION PROGRAMS 3

3.5 USING RAM DATA

The micro-controller that handles all the Terminal resources uses five different types
of RAM memory (for further information, see the “C51 Compiler Library Reference”,
chapter “Language Extension” and paragraph “Memory Types”).

For normal development activities you need not be particularly familiar with the
various memory segments because the memory model is already adequately set to
LARGE (all the variables are allocated in the XDATA section by default, also called
Data RAM).

XDATA is the only section the programmer can use; the remaining four (BDATA,
DATA, IDATA, PDATA) are reserved by the Operating System.

The programmer must pay attention that the sum of all the segments in XDATA
doesn’t exceed 32 Kbytes (see paragraph 4.1.9 “RAM Data Software Handling”).

The Linker lists XDATA segment positions and dimensions in the Linker Listing File
DS_OUT.M51.

3.6 TERMINAL AUTONOMY

Terminal autonomy depends on battery charge status and length of operation time.

As previously specified the Operating System features a resource that automatically
switches off the Terminal after a set period of inactivity. This function of the Operating
System is called "Power Saving Self Shut-Down" (psssd).

The function set_psssd_time() allows maximum flexibility. The programmer must
however consider that this function affects Terminal autonomy. In fact, especially
when used frequently, if the psssd time is long, the Terminal will remain on
needlessly for a long time thereby decreasing Terminal autonomy. Thus by reducing
Terminal activation time due to inactivity to a minimum, you will be exploiting the
battery to its fullest potential.

29

DS FOR FORMULA 3

It is essential that you recharge the battery without attempting to restart the Terminal
when this message is displayed:

LOW BATTERY

3.7 STATE RESUMPTION AFTER SHUT-DOWN

If you want to maintain the current state do not increase the "Power Saving Self Shut-
Down" value: simply maintain the last handler activation state in a variable and use
this value as a state of the application task upon restarting. In this way on restarting,
the Terminal will switch to the same state prior to shutdown by reactivating the input
output drivers and display.

3.8 DISPLAY FONTS

Two pre-defined font sets are available in DS for Formula. These fonts are defined
through a character table in the files FONT.C and NEWFONT.C (in the
FXXX\WORK.ORG folder). Only one font at a time can be used.

The character table is implemented by means of the global structure display_tab.

You can define your own font by modifying the above-mentioned structure in
FONT.C.

Every row of 6 bytes in the structure represents a character:

code unsigned char display_tab[128][6] = {
{ 0, 0, 0, 0, 0, 0 },
……..
{ C5, C4, C3, C2, C1, C0 }, /* this line represents a character */
……
};

30

DEVELOPING USER APPLICATION PROGRAMS 3

The relation between the 6 bytes of the row and the corresponding character dot
matrix can be represented with the following figure:

Dot matrix (6x8 pixel):

C5.0 C4.0 C3.0 C2.0 C1.0 C0.0

C5.1 C4.1 C3.1 C2.1 C1.1 C0.1

C5.2 C4.2 C3.2 C2.2 C1.2 C0.2

C5.3 C4.3 C3.3 C2.3 C1.3 C0.3

C5.4 C4.4 C3.4 C2.4 C1.4 C0.4

C5.5 C4.5 C3.5 C2.5 C1.5 C0.5

C5.6 C4.6 C3.6 C2.6 C1.6 C0.6

C5.7 C4.7 C3.7 C2.7 C1.7 C0.7

To light up a pixel, the corresponding bit must be set. For example, to light up the left
uppermost pixel, set bit 0 of byte C5 (C5.0 in the figure).

Note about non-graphic characters:

To mantain space between adjacent characters on the display, the first byte of
every character (C5 in the example, that is: the first column of the dot matrix),
must be cleared.

To mantain space between adjacent lines on the display, the first row of the
matrix (C5.0, C4.0, C3.0, C2.0, C1.0, C0.0) must be cleared (in other words:
all the least significant bits must be cleared, that is: all the bytes must have
even values).

When a character code is passed on input to a display function like putchar(), the
row used in display_tab is the one corresponding to the number:

ASCII character code – 32 + offset

where offset (whose default value is 0), can be modified at runtime, with the library
function set_display_tab_offset().

31

DS FOR FORMULA 3

For example, if
display_tab_offset = 1

the instruction:
putchar(32)

will result in the in the display of the second character represented in display_tab.

The first 32 codes correspond to control characters and cannot be displayed.

Font Selection

FONT.C and NEWFONT.C contain two pre-defined font character tables.

In FONT.C, only the most commonly used characters are coded (from ASCII
code 32 to 160).

In NEWFONT.C, an extended ASCII set is present (from code 32 to code 255).

NOTE

The FONT.C file is a subset of NEWFONT.C with the exception of two
characters (ASCII codes 126 and 127), see the following display
character maps.

DS for Formula uses the character font defined in FONT.C. If you want to use the
extended version in NEWFONT.C, or a personalized version (i.e. MYFONT.C), you
must rename the file to FONT.C. This allows application program compiling and
linking without making modifications to MAKEFILE and LINK.CMD.

NOTE

If your program uses ASCII character codes above 128, you must use
a DOS editor to handle them correctly. Windows editors handle
reading and writing these codes differently.

32

DEVELOPING USER APPLICATION PROGRAMS 3

Display Character Maps

FONT.C

upper
nibble

lower
nibble

2x

3x

4x

5x

6x

7x

8x

9x

x0

0

@

P

̀

p

Ç

È

x1

!

1

A

Q

a

q

ü

æ

x2

"

2

B

R

b

r

è

Æ

x3

3

C

S

b

s

â

ô

x4

$

4

D

T

d

t

ä

ö

x5

%

5

E

U

e

u

à

ò

x6

&

6

F

V

f

v

å

û

x7

’

7

G

W

g

w

ç

ù

x8

(

8

H

X

h

x

ê

ÿ

x9

)

9

I

Y

i

y

ë

Ö

xA

*

:

J

Z

j

z

è

Ü

xB

+

;

K

[

k

{

ï

¢

xC

,

<

L

\

l

|

î

£

xD

−

=

M

]

m

}

ì

¥

xE

.

>

N

^

n

→

Ä

Ŗ

xF

/

?

O

_

o

←

Å

ƒ

33

DS FOR FORMULA 3

NEWFONT.C

upper
nibble

lower
nibble

2x

3x

4x

5x

6x

7x

8x

9x

Ax

Bx

Cx

Dx

Ex

Fx

x0

0

@

P

̀

p

Ç

È

á

░

└

╨

α

≡

x1

!

1

A

Q

a

q

ü

æ

í

▒

┴

╤

β

±

x2

"

2

B

R

b

r

è

Æ

ó

▓

┬

╥

Γ

≥

x3

3

C

S

b

s

â

ô

ú

│

├

╙

π

≤

x4

$

4

D

T

d

t

ä

ö

ñ

┤

─

╘

Σ

⌠

x5

%

5

E

U

e

u

à

ò

Ñ

╡

┼

╒

σ

⌡

x6

&

6

F

V

f

v

å

û

ª

╢

╞

╓

µ

÷

x7

’

7

G

W

g

w

ç

ù

º

╖

╟

╫

τ

≈

x8

(

8

H

X

h

x

ê

ÿ

¿

╕

╚

╪

Ф

°

x9

)

9

I

Y

i

y

ë

Ö

⌐

╣

╔

┘

θ

•

xA

*

:

J

Z

j

z

è

Ü

¬

║

╩

┌

Ω

·

xB

+

;

K

[

k

{

ï

¢

½

╗

╦

█

δ

√

xC

,

<

L

\

l

|

î

£

¼

╝

╠

▄

∞

ⁿ

xD

−

=

M

]

m

}

ì

¥

¡

╜

═

▌

Ø

²

xE

.

>

N

^

n

~

Ä

Ŗ

«

╛

╬

▐

ε

■

xF

/

?

O

_

o

⌂

Å

ƒ

»

┐

╧

▀

∩

The figure below shows the graphic display icons:

34

TERMINAL RESOURCE MANAGEMENT 4

4 TERMINAL RESOURCE MANAGEMENT

4.1 RESOURCE MANAGEMENT TOOLS

The programming tools that allow full exploitation of the terminal resources are:

- LIBRARY FUNCTIONS: for direct management of hardware drivers and handler

activation / deactivation.

- EVENT FUNCTIONS: these are procedures called by the Operating System

responding to certain events such as a key press. Please note that these
procedures aren’t available as library functions but must be EXPLICITLY
IMPLEMENTED inside APL.C, even if not used.

NOTE

In this manual, as for pre-defined task functions, event function names
will be written in italics to distinguish them from the library functions.

The following paragraphs are each dedicated to different terminal resources. The
resource descriptions which include library and event function references are made
from a functional point of view.

For a detailed description of the library functions, see chapter 5.

For a complete list of event functions see paragraph 4.2.

4.1.1 Terminal Status Control

The operating system independently handles the controls and functions that are
fundamental for correct operation of the Formula Terminal, namely:

• initial hardware tests at start-up;

• signalling of first start-up and subsequent ones (restart);

• self shut-down on a predefined amount of inactivity time;

• battery status control (charged/discharged);

• transceiver status control (placement on and removal from transceiver).

35

DS FOR FORMULA 4

Operating System Control

The DS for Formula library makes the following functions available to the
programmer that permit direct Terminal power-off, Operating System restarting (with
or without data deletion), and handling of fault reporting:

pen_shut_down(): terminal power off

fault(): restart without data deletion

reset_sys(): restart without data deletion

exit_to_rst(): startup with data deletion

exit_to_bl(): erasure of the FLASH program

The programmer does not normally use these functions.

Initial Tests

On start-up the Operating System will perform a hardware test session of the
Formula Terminal.

The first test checks the application program.

The second test checks the program RAM memory configuration; the Terminal
displays the message in the figure.

ChkRamConfig
xxxKb found

The hardware configuration of the Terminal RAM memory is then detected and
stored (see RAM Self-Configuration in par. 4.1.9 and the ram_config() function).

The third test checks and cancels overlaid RAM banks.

CAUTION

The testing of program RAM memory banks destroys any stored
data.

This destructive test is skipped if the application was linked with the NOCLRAMB.LIB
(see RAM Memory Used as Data Disk for Multiple Applications in par. 4.1.9).

36

TERMINAL RESOURCE MANAGEMENT 4

The number of banks present depends directly on the configuration of the Terminal
according to the table in paragraph 4.1.9 "Terminal RAM Configurations".

Each bank has a memory size of 32 KBytes.

During this phase the Terminal displays:

Testing
RamBankXX
YYYYKb ok

where:
XX = is the bank currently tested
YYYY = the amount of RAM tested positively

If all the tests have tested positively, all the RAM banks are then initializated with the
value 0. These operations are highlighted by the message in figure.

Clearing
RamBankXX
YYYYKb

Now, visually check that the calendar-clock is working properly - you should notice
the digits change progressively; also check that the buzzer sounds.

Testing
Clock
Buzzer

These tests are interactive in the sense that they require you to supervise them.

The internal clock is initialized with compiling date and time:

Date&Time
31:12:01
23:59:58

Time and date are displayed for 5 seconds, then the application task is executed
immediately after, displaying its relative messages.

37

DS FOR FORMULA 4

Start-up

The term Start-up as used throughout this manual stands for the first activation of the
application program after being uploaded.

The Operating System is able to identify the first start-up and invokes the event
procedure

void apl_startup(void)

which must be implemented in the APL.C module. This function is executed only
once during the lifetime of an application program.

In this function the programmer can enter the code (program) that must be executed
only at first start-up, for example in the allocation of tasks or timers; see paragraphs
3.2 and 4.1.2.

Restart

Restarts are defined as any activation of the application program after the initial start-
up after pressing the SCAN key of the Terminal or following placement on the
transceiver.

The Operating System is able to identify restarts and runs a call to the event
procedure:

void apl_restart(void)

which must be implemented in the APL.C module.

In this procedure the programmer can enter the code (program) that must be run only
at each restart command.

Apl Start

The function:

void apl_start(void)

which must be implemented in APL.C, is called at every activation (both start-up and
restart).

Battery Charge Check

The Operating System features a periodic task that autonomously checks the battery
status (charged/flat).

38

TERMINAL RESOURCE MANAGEMENT 4

The Terminal is able to identify four levels of battery charging.

• The first case, which is generically indicated as “Battery Warning", is identified

by three possible levels (1,2,3) in increasing value, as the battery charge
becomes closer to the critical threshold. The beginning of each battery warning
event is signalled to the program by the following:

void batt_warning_event(unsigned char level)

where level can assume values = 1, 2, 3.
This event function must be implemented in APL.C.

In these phases it is necessary to recharge or replace the battery as soon as
possible.

The end of these events is instead signalled by the following:

void batt_warning_off_event(void)

This event function must be implemented in APL.C.

The programmer can decide whether to customize the battery charge-status
warnings in different ways: for example, by making the LED flash, by activating
the buzzer, or by signalling the various battery charge states using the
corresponding icons found on the display.

• The second case indicates that the battery charge has become too low to

enable operation.

The Operating System will therefore display the message in the figure and
switch the Formula Terminal off.

LOW BATTERY

The Operating System signals power-off of the Formula Terminal to the application
program with a call to the procedure:

void shut_down_event(void)

This event function must be implemented in APL.C.

In this procedure the programmer can enter the code (program) that must be run
before power-off.

39

DS FOR FORMULA 4

CAUTION

Following battery low status, shutdown of the Formula Terminal must
not be inhibited by the program, otherwise safe storage of data
cannot be guaranteed.

Following the battery low message, do not insist in restarting the Terminal but
promptly charge up the battery.

Terminal Placement and Removal from Cradle Check

The Operating System independently checks placement (insertion) and removal
(extraction) of the Formula Terminal from the transceiver cradle by means of a
periodic task.

The Operating System signals placement and removal of the Formula Terminal with
the following calls to the event procedures:

void insertion_event(void)

void extraction_event(void)

which must be implemented in APL.C.

In these procedures the programmer can enter the code (program) that must be run
together with these events.

Power Saving Self-Shutdown

The Terminal self-shutdown feature, essential for prolonging the battery charge, is
already implemented at Operating System level.

This feature, called "Power Saving Self-Shutdown", switches off the Terminal after a
predefined amount of idle time.

Again, the Operating System signals this event to the application program calling the
function shut_down_event().

40

TERMINAL RESOURCE MANAGEMENT 4

There are three library functions that allow control of "Power Saving Self-Shutdown":

retrig_psssd()

stop_psssd()

set_psssd_time()

The amount of idle time is restored to its initial value through the retrig_psssd()
function. The Operating System manages this re-initialization for the following events:

• removal from the transceiver

• pressing or releasing the SCAN key

• pressing a key on the keyboard

• CONSOLE or ARROW key autorepeat

• reading of a common barcode (only if enabled)

• reading from the Barcode Keypad

• starting of a radio communication

The timer count for the self-shutdown is blocked by the stop_psssd() function.

The Operating System uses this function when the Terminal is inserted in the
transceiver (in this case the Terminal must stay on).

The time after which the Terminal switches off is defined by means of the following
constant in the GENK.INC module:

T_PSSSD

Currently, this time is 7 seconds long.

This can be varied dynamically during execution with the function

set_psssd_time()

In order to enhance Terminal autonomy try to reduce Terminal activation time as
much as possible.

NOTE

DO NOT exceed 10 seconds. Doubling activation time cuts Terminal
autonomy by half.

41

DS FOR FORMULA 4

In addition the self-shutdown function is reset by all the events that indicate activity
by the operator; so the self-shutdown time does not have to be lengthened too much,
because while it is being actively used the Terminal obviously remains on.

4.1.2 Software Timers

Timers are software devices available to the programmer to create delays without
blocking the Operating System.

Delays are often necessary in the development of applications to:

• wait for displays

• wait for operator actions

• implement timeouts

Since the Library software timers do not block the Operating System, while waiting
for the expiry of a delay, the Operating System can run.

The timers are most commonly allocated in the program start-up phase by means of
the function rqtim(), but can also be dynamically allocated within the application.

The timer is written by means of the wrtim() procedure described in detail in
chapter 6 "Library Reference".

When idling, the timer is in the IDLETIM state and if set to the RUNTIM state, the
Operating System will decrement the counter matched to it.

Each counter unit is worth 50 ms.

The programmer will find ready-provided constants to express times in GENK.INC.

You can also handle the timers in polling mode by means of the procedures
rdtimst() and rdtimc() which respectively read the state and the counter value
(see examples in respective descriptions in chapter 6 “Library Reference”).

Example

T1SEC = 1 second

T1MIN = 1 minute

T1MIN+T5SEC = 65 seconds

5 SECONDS = 5 seconds

1 MINUTE = 1 minute

42

TERMINAL RESOURCE MANAGEMENT 4

When the counter reaches zero, the timer passes to the ENDTIM state. Then the end
of timer procedure, which must be defined by the user, is called. This continues until
the timer is purposely set to IDLTIM by means of the wrtim() function.

The previous values could be further delayed due to the effective Operating System
load.

4.1.3 Decoder Handler Functions

The decoder handler supervises the acquisition sequence of a barcode, handling the
following operations in appropriate order:

• polling of activation key

• activation of laser scanner or optical pen reader element (depending on the
product) when this key is kept pressed

• control of maximum laser beam activation time (for laser reader products)

• display of several characters as a prompt

• activation of the decoding driver

• decoding of a barcode in an ASCII string

• handling the acquisition of several codes on the same scan line in one single
acquisition process (for laser reader products)

• handling the multiple reading or decoding safety (up to 5 times) of one single
code in one single acquisition process (for laser reader products)

• checking of the code read on the basis of pre-established characteristics
(length, symbol, type of character)

• handling the Erase All special barcode for return to bootstrap with deletion of
application program and data

• checking and handling of the special Procedure Codes from the Barcode
Keypad (used to start event functions)

• handling single characters from the Barcode Keypad (alphanumeric, Enter,
Backspace): it is possible to insert a string of characters reading from the
Barcode Keypad. The string is terminated reading the barcode for Enter. The
last character inserted is deleted from the output buffer reading the code for
Backspace

• automatic proposal of a default string with loading of the same to the output
buffer (subject to control with respect to filter parameters passed during
invocation to handler)

• handling the ability to edit and overwrite the default string

43

DS FOR FORMULA 4

• power-off of the laser scanner element at the end of reading (for laser reader
products)

• deactivation of the decoding driver

The decoder handler moreover signals a code reading event (from the Barcode
Keypad or normal code, if enabled) irrespective of acquisition process termination
through invocation of the event function:

void dec_event(void)

which must necessarily be implemented in APL.C.

The handler controls all the described operations concurrently with no intervention of
the application program; the handler must be activated with a single call to the
function:

dec_hreqst()

The status of the handler and the information about acquisition are available to the
programmer in the global variable:

dec_answer

When using Laser Reader Terminals, it is possible to scan more than one barcode
with a single acquisition process (maximum is 4 different barcodes); in this case, the
information of the supplementary codes are available in 3 other global variables:

dec_answer1

dec_answer2

dec_answer3

The handler must be deactivated when the acquisition process is completed with the
function:

dec_habort()

Deactivation of the decoding handler (dec_habort()) must be carried out when the
insertion_event() takes place.

In summary, the library functions available to the programmer are:

dec_hreqst()

dec_habort()

dec_hcnfg0()

44

TERMINAL RESOURCE MANAGEMENT 4

At driver level, the library functions available to the programmer are:

symblg()

symblgchksm()

dis_allsymblg()

For further details, refer to chapter 6 “Library Reference”.

Decoding Library Selection

The possible choices available are:

DEC.LIB complete barcode decoding library

DEC_NOZ.LIB barcode decoding without ZELLWEGER support

DEC_NOIZ.LIB barcode decoding without Delta A IBM and without
ZELLWEGER

DECNOIMZ.LIB barcode decoding without Delta A IBM, without MSI and
without ZELLWEGER

To select the desired decoding library, simply type the library file name into the
LINK.CMD file. See par. 3.3.2.

4.1.4 Keyboard Handler Functions

¾ F734, F732, F725, F660. Standard and Enhanced Versions

The keyboard handler supervises the acquisition sequence of a string of characters
and the control of the other keys ensuring the following performance:

• display of a prompt string

• keyboard polling at driver level to identify the key pressed

• software de-bouncing filter

• input control according to the pre-set characteristics (minimum length, maximum
length, character type) and error signaling

• construction of string with terminator (output buffer) and control of the end of the
acquisition process due to the ENTER key (not included in output buffer)

• BS key control for left deletion (eliminates the last character of the output buffer)

45

DS FOR FORMULA 4

• automatic proposal of a default string with loading of the same in the output
buffer (subject to prior control by comparison with the filter parameters passed in
the invocation to handler). There is no echo of the string to the display.

• handling of the editing facility (by backspace key BS) and overwriting (by new
input) of the default string

• the keyboard is divided in logic sections:

− CONSOLE keys (numerical keys, "." and "SP")

− ARROW keys

− FUNCTION keys including ESC

− SEND key (emulated with SHIFT + ESC on all terminals except F660-E and
F660)

− SCAN key

• possibility to separately "enable" individual logic sections of the keyboard

• CONSOLE section constructs the output buffer

• handling of “shift” mode (with SHIFT key) for the CONSOLE, FUNCTION and
SEND key sections (the latter for all terminals except F660-E and F660)

• the “shift” mode for the CONSOLE section enables the selection of alphabetical
characters and symbols (all white symbols):

− the first CONSOLE key press selects the first character and triggers a time-
out of two seconds

− the second same CONSOLE key press selects the second character

− the third same CONSOLE key press selects the third character and resets
the time-out

− when the time-out elapses, the character currently selected is validated

− pressing the shift key in "shift" mode confirms any previously selected
character and resumes the “shift” mode

− pressing any other CONSOLE section key in "shift" mode, confirms the
previously selected character in “shift” mode, and also the different character
in “non-shift” mode

− double-pressing the shift key not only enables "shift" mode but also enables
the caps lock function for CONSOLE section keys. The key acqusition
changes from upper to lower case or vice-versa (not implemented by
default).

46

TERMINAL RESOURCE MANAGEMENT 4

• “shift” mode for the FUNCTION keys section enables selection of the following:

F734-E, F734, F732-E, F732: SPECIAL F1, SPECIAL F2, SPECIAL F3, SPECIAL F4
F725 E, F725: F1, F2, F3, F4
F660 E, F660: F3, F4

• “shift” mode for the SEND section key enables the SEND key (emulated by
SHIFT + ESC) for the following terminals:

F734-E, F734, F732-E, F732, F725 E, F725

• optional incremental auto-repeat function (CONSOLE section in “non-shift”
condition, ARROW keys section and BS). When enabled, the auto-repeat
function engages a key, if kept pressed, for approximately 700 milliseconds;
therefore the same character is sent to the output buffer with an interval that
starts at 600 milliseconds and decreases to 300 milliseconds, for as long as the
key is kept pressed.

• the keyboard handler, responding to a key press, can call different procedures,
depending on the section parameter value passed on input to kb_hreqst() for
the CONSOLE, ARROW, FUNCTION, SEND and SCAN key sections. The
event procedures are listed below, together with the related section parameter
value:

Event function Activation constant

void kb_hactiv_consol(unsigned char key_code) SECTCONSOL

void kb_hactiv_arrows(unsigned char key_code) SECTARROWS

void kb_hactiv_functn(unsigned char key_code) SECTFUNCTN

void kb_hactiv_sfnctn(unsigned char key_code) SECTFUNCTN and

SECTSENDIR

void kb_hactiv_onkeys(void) SECTONKEYS

These procedures, which must be implemented in APL.C, can be used to
customize keyboard operation and user interfacing (beeps, cursor type, etc.);

• optionally enable the SCAN key as the ENTER key of keyboard;

• deactivation of the keyboard driver.

47

DS FOR FORMULA 4

The keyboard handler, similar to other handlers, signals a keyboard event, (pressing
of SCAN key if enabled or any other key) irrespective of termination of the acquisition
process through the event function call:

void kb_event(void)

which must necessarily be implemented in APL.C.

The handler manages all the described operations concurrently with no intervention
by the application program and is activated with a unique call to the function:

kb_hreqst().

The status of the handler and the information about acquisition are available to the
programmer in the global variable:

kb_answer.

The handler must be deactivated when the acquisition process is complete via the
function

kb_habort().

In summary, the library functions available to the programmer are:

kb_hreqst()

kb_habort()

For more details refer to chapter 6 "Library Reference".

48

TERMINAL RESOURCE MANAGEMENT 4

F734-E, F734, F732-E, F732 Keyboard Sections

Keyboard Layout

CONSOLE CONSOLE Ctrl ARROWS

FUNCTION

FUNCTION/SEND Ctrl

SEND SCAN

49

DS FOR FORMULA 4

F725-E, F725 Keyboard Sections

Keyboard Layout

CONSOLE CONSOLE Ctrl ARROWS

FUNCTION

FUNCTION/SEND Ctrl

SEND SCAN

F660-E, F660 Keyboard Sections

Keyboard Layout

CONSOLE CONSOLE Ctrl ARROWS

FUNCTION

FUNCTION Ctrl

SEND SCAN

50

TERMINAL RESOURCE MANAGEMENT 4

¾ F630

The keyboard handler supervises the acquisition sequence of a default string of
characters and the control of the other keys ensuring the following performance:

• display of a prompt string;

• keyboard polling at driver level to identify the key pressed;

• software de-bouncing filter;

• a default string loaded in the output buffer (subject to prior control by comparison
with the filter parameters passed in the invocation to handler); no echo of the
string to the display

• the keyboard is divided in logic sections:

− SCAN key section

− CONSOLE key section (ENTER key emulated by SCAN key)

− ARROW keys section (UP and DOWN which also emulate LEFT and RIGHT
by using the SCAN key as the UPDWNARROWS or LFTRGTARROWS
selector

− FUNCTION keys section (ESC emulated by pressing UP and DOWN Arrow
keys simultaneously; F1 emulated by pressing SCAN for 1.5 seconds),

• possibility to separately "enable" individual logic sections of the keyboard. In this
case the SCAN key is a multi-functional key that assumes the function of the
enabled section. If more than one section is enabled, the key respects the
following priority:

1. SCAN key

2. ENTER key

3. UPDWNARROWS, LFTRGTARROWS and F1

• optionally enable the SCAN key as the ENTER key of keyboard. This allows
simultaneously enabling SCAN key and CONSOLE key sections

• optionally disable the SCAN key as a multi-functional key. In this case it is no
longer possible to emulate the ENTER key (unless explicitly enabled by the
option above), the UPDWNARROWS, LFTRGTARROWS selector (therefore no
LEFT or RIGHT arrow keys available) nor the F1 key.

• optional incremental auto-repeat function for the arrow keys. When enabled, the
auto-repeat function engages a key, if kept pressed, for approximately 700
milliseconds; therefore the same character is sent to the output buffer with an
interval that starts at 600 milliseconds and decreases to 300 milliseconds, for as
long as the key is kept pressed.

51

DS FOR FORMULA 4

• the keyboard handler, responding to a key press, can call different procedures,
depending on the section parameter value passed in input to kb_hreqst() for
the SCAN, CONSOLE, ARROW and FUNCTION key sections; the event
procedures are listed below, together with the related section parameter value:

Event function Activation constant

void kb_hactiv_consol(unsigned char key_code) SECTCONSOL

void kb_hactiv_arrows(unsigned char key_code) SECTARROWS

void kb_hactiv_functn(unsigned char key_code) SECTFUNCTN

void kb_hactiv_onkeys(void) SECTONKEYS

These procedures, which must be implemented in APL.C, can be used to
customize keyboard operation and user interfacing (beeps, cursor type, etc.);

• deactivation of the keyboard driver.

The keyboard handler, similar to other handlers, signals a keyboard event (pressing
of SCAN key if enabled or any other key), irrespective of termination of the
acquisition process through the event function call:

void kb_event(void)

which must be necessarily implemented in the APL.C module.

The handler manages all the described operations concurrently with no intervention
by the application program and is activated with a unique call to the function:

kb_hreqst()

The status of the handler and the information about acquisition are available to the
programmer in the global variable:

kb_answer

The handler must be deactivated when the acquisition process is complete via the
function:

kb_habort()

In summary, the library functions available to the programmer are:

kb_hreqst()

kb_habort()

For more details refer to the "Library Reference".

52

TERMINAL RESOURCE MANAGEMENT 4

F630 Keyboard Sections

Keyboard Layout

CONSOLE ARROWS FUNCTION

SCAN

4.1.5 Serial Communication Handler Functions

Three different communication handler libraries are available:

HDLCOM00.LIB frame driven
HDLCOM10.LIB frame driven with Xon/Xoff
HDLCOM20.LIB character driven

Each one of these handlers supervises the transmission and reception sequence and
is divided into two separate parts.

• During transmission it handles the construction of a communications frame and
controls the transmission of all the characters, while also handling the end of the
process and any errors.

• In reception it controls the reception of all the characters, and handles the end of
the process and any errors.

The handler manages all the described operations concurrently with no intervention
by the application program. After having set the communication parameters through
setcom(), the handler must be activated for transmission and reception with calls to
the two library functions:

tx_hreqst() or (tx1_hreqst() or tx2_hreqst(), depending on the library)

rx_hreqst() or (rx1_hreqst() or rx2_hreqst(), depending on the library).

53

DS FOR FORMULA 4

If HDLCOM00.LIB or HDLCOM10.LIB are used, the handler states and other
information about transmitted and received sequences are stored in the global
variables:

tx_answer

rx_answer

The maximum configurable communication speed when using these two libraries is
19200 baud.

The handlers must be deactivated via the functions:

rx_habort()

tx_habort()

when the acquisition process has been completed and the Formula Terminal is not
on its transceiver.

The library functions available in HDLCOM00.LIB are:

rx_hreqst()

rx_habort()

tx_hreqst()

tx_habort()

The serial communication handler included in HDLCOM10.LIB allows the handling of
a simplified frame that does not contain STX and Station Address; in RS-232
connection it allows full-duplex communication or transmission in Xon/Xoff mode
(flow control).

It also controls the RS-485 line in half-duplex mode.

The library functions available in HDLCOM10.LIB are:

rx1_hreqst()

rx_habort()

tx1_hreqst()

tx_habort()

The reception of the flow control characters can be prolonged beyond the time period
of frame transmission by delaying or omitting the call of the function tx_habort().

Enabling of the transmission handler tx1_hreqst() normally resets the Xoff status.

54

TERMINAL RESOURCE MANAGEMENT 4

The flag PROTNOXINI passed to .prot allows the Xoff status not to be reset at the
moment of invocation.

For further details, refer to the “Library Reference”.

HDLCOM20.LIB allows the operator to directly control the low-level serial
communications. It provides the communications system with the advantages of
notable speed increase and of complete adaptability. As it will be necessary to use
interrupt routines, avoid creating error situations on the Terminal; to this end we
recommend that the interrupt service routines execute only the instructions strictly
necessary and don’t call heavy library functions such as printf(), scanf() or
sprintf().

When using this library, the maximum configurable communication speed is 57600
baud, but the maximum execution time should not exceed the transmission time of
one character at the set baud rate, so that the reception interrupt routine doesn’t lose
incoming characters.

To maintain good reception speed performance, the interrupt service routine is pre-
defined so, when a character is received, the handler calls the event function:

void rxchcom (unsigned char chr)

which must be implemented in APL.C.

Otherwise, the transmission interrupt service routine can be defined by the user
passing its address on input to tx2_hreqst().

CAUTION

The functions wrtim(), slptsk(), rdytsk(), and dlytsk()
must not be invoked inside the interrupt service routines (the user-
defined transmission ISR and the reception ISR rxchcom().

The library functions available in HDLCOM20.LIB are:

rx2_hreqst() reception enable

rx2_habort() reception disable

tx2_hreqst() transmission enable and interrupt service routine definition

tx2_habort() transmission disable

txchcom() transmit a character

getcomerror() return serial port status

55

DS FOR FORMULA 4

For more details refer to the "Library Reference" section.

See the example Workdemo.003 for an application using HDLCOM20.LIB.

Communication Handler Selection

Three different communication handler libraries are available:

HDLCOM00.LIB
HDLCOM10.LIB
HDLCOM20.LIB

To select the desired communication library, simply type the library file name into the
LINK.CMD file. See par. 3.3.2.

Protocol Construction

Like all other handlers, the serial communication handlers work at frame level to
relieve the programmer of the task of low level handling of every character.

They have been designed to allow enhanced construction of customised dialogue
protocols.

A protocol ensures control and synchronization of data exchange, and is
indispensable when you handle a multipoint network.

This solution is tackled by using an RS-485 connection from an electrical point of
view, and by means of an active multipoint protocol on the network master device
and on the Terminal itself from a logic point of view.

The main characteristics of this multipoint protocol are:

• it is a polling-selecting type protocol;

• there always is a master device that takes the initiative to undertake
transmission;

• each device has a different address shown in the communication frame, so as to
univocally identify all the devices present in the network;

• it is a half-duplex type since the RS-485 connection allows this mode only;

• it comprises a set of commands that are interpreted by the devices and
generate a response

56

TERMINAL RESOURCE MANAGEMENT 4

The reception handler rx_hreqst() (included in HDLCOM00.LIB) ensures the
control of data received according to the specified frame, and acknowledgement of
the Station Address.

If the received frame has correct STX and Station Address but does not comply with
the specification, the handler will reply with ACQNOV, which means that the frame is
not correct.

This may happen: the moment the Terminal is placed on or removed from the
transceiver if the master device is in the process of transmission; in case of parity
errors; or for a frame that does not comply with specifications (in this case .errorc
specifies the type of error).

ACQNOV therefore allows the handling of a "retry" logic that may be performed at
application task level.

Other fields can be inserted inside the field "Information" as for example the
checksum. This additional information will not be checked during reception, but only
when the frame has been received completely in correct format (therefore at
application task level).

4.1.6 Radio Frequency Communication Handler Functions

Two different handlers are available for Radio Frequency Communication. The
handlers are intended for use with two different systems, those based on the new
STARGATE™ RF base station and those based on the Formula RF/SAT satellite.

STARGATE™ based systems

A STARGATE™ based system is made up of a Host PC running the network
manager software (using the STAR-Link™ ActiveX), one or more STARGATE™ RF
base stations connected to the host by means of an RS232 or RS485 line (each
base station covers a cell) and one or more RF Terminals. The communication
protocol uses a CSMA/CA scheme, where CSMA/CA stands for “Carrier Sense
Multiple Access / Collision Avoidance”.

When radio communication is active, the Terminal is logically linked to only one
STARGATE™ RF base station at a time. The protocol dynamically chooses the best
station with which to communicate, allowing handover from one cell to another. The
routing of data packets from the application running on the Terminal to the
application running on the Host PC is also managed by the protocol.

57

DS FOR FORMULA 4

Each STARGATE™ RF base station and each RF Terminal is identified by a unique
address. Two RF devices or two RF base stations cannot have the same address
while a Terminal can have the same address as a base station.

The library HDLRF.LIB contains the handler that implements the CSMA/CA protocol
and manages the RF communication between the Radio Formula Terminals and the
STARGATE™ RF base station.

The library functions handle communication automatically, managing error checking
and corrupted data packet retransmission.

This library is not compatible with the previously existing ones for RF/SAT
based systems; moreover, the interface is different.

NOTE

An application program written for RF/SAT based systems must be
modified in order to take advantage of the new protocol implemented
in HDLRF.LIB. See "APPLICATION PROGRAM PORTABILITY" in
Appendix A for some suggestions on how to port an application
program from RF\SAT to STARGATE™ based systems.

From the Terminal point of view, activating a radio communication link is also called
opening a radio session.

Within a single session it is possible to make one ore more transactions, that is,
data communications between the Terminal and the STARGATE™ RF base station.

Two types of transactions are available:

• One Way: the Terminal requests to send a data packet to the host through
STARGATE™ and waits for an acknowledgement.

• Two Ways: the Terminal requests to send a data packet to the host through
STARGATE™ and waits for a data packet in response (this is the only way to
receive data from the host PC).

In both cases, the data received by the STARGATE™ RF base station are passed to
the host.

Note that both transaction requests must have an acknowledgement back from the
network to be correctly completed. This assures that the Terminal application
program always knows if the data packet has been correctly delivered or not.

To open a session use the library function

rf_init().

This function performs the necessary protocol initializations.

58

TERMINAL RESOURCE MANAGEMENT 4

It is possible to close a radio session through the library function

rf_close().

It is suggested to open a radio session at program start-up and to close the session
only if parameter modification is necessary. To keep the communication fast it is
better not to make frequent session openings and closings in order to avoid
unnecessary repeated initializations and logins.

When the Terminal is not in the cradle, to start a transaction the RF communication
handler must be activated through a call to the library function

rf_hreqst().

The handler enables the drivers and hardware involved in the RF communication,
and switches the serial port of the micro-controller to the RF board thereby
preventing serial communication to the transceiver. All these operations are handled
with no intervention by the application program.

NOTE

In order to obtain the best communication performance, it is suggested
not to activate the decoder handler nor to access the e2prom before
the current transaction is terminated.

The first transaction after session opening takes more time than the following ones
because the Terminal is logged onto the radio network.

To check communication status the following library function is available:

rf_status().

This function permits knowing when the transaction is terminated.

To avoid expensive polling of the transaction status, the programmer can make use
of the event function

void rf_event(void).

Because the handler calls this function when events happen that are meaningful for
the transaction, the programmer can use this function to wake-up the application task
only when necessary.

This event function must be implemented in APL.C.

59

DS FOR FORMULA 4

To force transaction termination use the library function

rf_habort().

This abort command of the RF communication handler disables the drivers and
hardware involved in the RF communication, resumes the communication
parameters set previously, and switches the serial port of the micro-controller to
serial communication with the optical transceiver.

Note that the serial communication handler and the RF communication handler are
mutually exclusive, but HDLRF.LIB automatically manages this. It is therefore not
necessary to force RF handler termination inside the event function
insertion_event().

Should the transaction fail due to timeout or early termination through rf_habort(),
a new transaction activation try must be performed using:

rf_hretry().

If the transaction was Two Ways and was correctly terminated, the data received
from the host can be read using the library function

rf_read().

It is possible to know the address of the STARGATE™ base station with which the
last terminated transaction was carried out using:

rf_stargate().

Lastly, the protocol and the HDLRF.LIB library version can be retrieved with the
function

rf_version().

For a detailed description of the above mentioned library functions refer to chapter 6
"Library Reference".

For an example program using HDLRF.LIB, see APL.C in Workdemo.005.

60

TERMINAL RESOURCE MANAGEMENT 4

RF/SAT based systems

The RF communication handler supervises the transmission and reception
sequences between a network master device (the RF Satellite) and a Formula
Terminal equipped with a radio module.

This satellite interfaces with the communication network SYSNET and acts as
protocol converter.

Refer to "RF Satellite" Reference Manual for more details on related hardware.

Of its own accord the RF communication handler carries out the following tasks:
transmission will start immediately;

• transmission of the entire buffer to the satellite using a dedicated protocol

• reception of data

• monitoring of transmission time with one of the following messages sent
accordingly:

– successful termination of transmission

– transmission not completed within set time-out

– handler active

– connection established

This handler, similar to others, signals the start of radio communication via the event
function call:

void ir_event(void)

which must necessarily be implemented in APL.C.

Communication can begin when the Terminal is either in or out of the cradle. In the
first case it must be verified that serial communication does not create interference.

The handler is activated with a single call to the library function:

ir_hreqst().

The handler enables the drivers and hardware involved in the RF communication,
and switches the serial port of the micro-controller to the RF board thereby
preventing serial communication to the transceiver. All these operations are handled
with no intervention by the application program.

61

DS FOR FORMULA 4

NOTE

In order to obtain the best communication performance, it is suggested
not to activate the decoder handler nor to access the e2prom before
the current transaction is terminated.

The handler state and other information about RF connection are stored in the global
variable:

ir_answer.

The transmission process must be terminated with the library procedure:

ir_habort()

This abort command of the RF communication handler disables the drivers and
hardware involved in the RF communication, resumes the communication
parameters set previously and switches the micro-controller serial port to serial
communication with the optical transceiver.

Please note that the serial communication handler (to the transceiver) and the RF
communication handler are to be used in a mutually exclusive manner, so the radio
communication handler must be stopped calling ir_habort() inside the event
function insertion_event(). The only exception to this is when radio
communication is forseen when the Terminal is in the cradle.

In summary, the library functions available to the programmer are:

ir_hreqst()

ir_habort()

For more details refer to the “Library Reference” section and the "RF/SAT" Reference
Manual.

RF Library Selection

Four libraries are available, depending on the radio system, plus one dummy library
for non RF Terminals. Only one of these libraries must be linked to the application
program.

STARGATE™ based system library

HDLRF.LIB new radio communication handler for systems using
STARGATE™ RF base stations.

62

TERMINAL RESOURCE MANAGEMENT 4

RF/SAT based system libraries

RF.LIB radio communication handler when using the RF Satellite

NEWRF.LIB radio communication handler when using RF Satellites with
version V5R0 or later.

RF1.LIB radio communication handler when using F951/RF as a
Satellite.

Non-RF application library

EMPTYRF.LIB dummy radio communication. Link this library to save
memory space for non- RF applications.

To select the desired RF library, simply type the library file name into the LINK.CMD
file. See par. 3.3.2.

4.1.7 E2PROM Functions

One half of the E2PROM (128 bytes) is available to the application through these
library functions:

Usr_EraseE2prom()

Usr_ReadE2prom()

Usr_WriteE2prom()

For further details refer to the “Library Reference”.

E2PROM Library Selection

Three libraries are available, plus one dummy library for F660 (this terminal doesn’t
mount an E2PROM):

E2P.LIB complete E2PROM driver. Don’t use with F660.

E2PNOUSR.LIB E2PROM driver without user functions:
(Usr_EraseE2prom(), Usr_ReadE2prom(),
Usr_WriteE2prom()). Don’t use with F660.

E2PCONSN.LIB E2PROM driver without user functions:
(Usr_EraseE2prom(), Usr_ReadE2prom(),
Usr_WriteE2prom()) and without test of checksum on
reading the default contrast and serial number. Don’t use
with F660.

EMPTYE2P.LIB dummy E2PROM driver. Use only with F660.

63

DS FOR FORMULA 4

To select the desired E2PROM library, simply type the library file name into the
LINK.CMD file. See par. 3.3.2.

4.1.8 Clock Handler Functions

The clock handler supervises data and time acquisition from the internal clock
device. Every second, the handler calls the event function:

void second_event (void),

which must be implemented in APL.C.

The clock handler is automatically activated by the Operating System and cannot be
deactivated.

The user can retrieve data and time status as numbers in the global variable:

main_clock

or as strings in the global variables:

main_time

main_date

It is also possible for the programmer to set or to read the date and time using the
library functions:

writeclock()

readclock()

For further details refer to the “Library Reference” section.

Clock Library Selection

Two libraries are available:

HDLCK.LIB complete clock handler. Don’t use with F660-E, F660, F630.

HDLCKNWU.LIB clock handler without wakeup functions (setwakeup(),
checkwakeup()).

To select the desired Clock library, simply type the library file name into the file
LINK.CMD. See par. 3.3.2.

64

TERMINAL RESOURCE MANAGEMENT 4

4.1.9 RAM Functions

RAM Data Software Handling

The first 32K XDATA memory segment is always visible, it is allocated to the
addresses from 0 to 7FFFH, and is therefore not banked (not handled by the bank
selection logic).

NOTE

Remember that all the fixed variables allocated by the Operating
System and by the application program must reside within the first
32 Kb area.

The subsequent banks (from 1 to n) are allocated from location 8000H to location
FFFFH in the memory segment XDATA, and overlaid.

The selection of these RAM banks takes place via the library functions,

bankset()

sv_currentbank()

rp_previousbank()

Only one bank at a time can be selected. In addition, since the banks are visible only
when they are selected and have overlaid addresses, variables cannot be allocated
(i.e. declared) in the XDATA memory area from 8000H to FFFFH.

This area, generally used to store data, is easily accessible by means of pointers, i.e.
by indirect addressing, as described in the bankset() library function.

The location of the declared variables can be checked in the listing produced by the
linker with the name DS_OUT.M51.

65

DS FOR FORMULA 4

XDATA Memory Map

N

4

3

2
MEMORY

BANK 1

MEMORY
BANK 0

7FFFH

0

FFFFH

8000H

Terminal RAM Configurations

The Formula Terminal can be equipped with different data RAM configurations:

Configuration Banks
128 KByte 3 banks + bank 0
512 Kbyte (not for F630 terminals) 15 banks + bank 0
1024 Kbyte (not for F660-E, F660, or F630 terminals) 31 banks + bank 0
2048 Kbyte (only for F725-E, F725 terminals) 63 banks + bank 0

Each configuration corresponds univocally to a given number of 32 KByte banks as
described in the above table.

66

TERMINAL RESOURCE MANAGEMENT 4

The library function
ram_config()

returns the total amount of RAM banks (including bank 0).

RAM Memory Self-Configuration

During the "Initial Tests" phase, the total number of RAM banks (including bank 0) is
detected and saved in memory. This value is returned through ram_config().

RAM Memory Using VDISK

By using the VDISK library instead it is possible to use the memory as if it were
contiguous. This area of memory is seen as a disk and it is therefore used as an I/O
area for files. With this in mind, some functions have been developed which allow file
allocation, data reading and writing, positioning in any part of files, etc.

RAM Memory Used as Data Disk for Multiple Applications

The RAM memory can be used as a data disk, maintaining the integrity of its
contents for different application programs loaded onto the Terminal. This is done by
linking the NOCLRAMB.LIB library so that at startup, the overlaid RAM banks are
detected without modifying their content (no testing or cancelling).

67

DS FOR FORMULA 4

4.2 SUMMARY OF EVENT FUNCTIONS

The following is a complete list of all the event functions that must be implemented in
the APL.C source file (even if not used), to obtain a correctly functioning application
program.

Event function: Paragraph:

void apl_restart(void) ... 4.1.1
void apl_start(void)... 4.1.1
void apl_startup(void) ... 4.1.1
void batt_warning_event(void) ... 4.1.1
void batt_warning_off_event(void).. 4.1.1
void dec_event(void)... 4.1.3
void extraction_event(void) ... 4.1.1
void insertion_event(void) ... 4.1.1
void ir_event(void)... 4.1.6
void kb_event(void)... 4.1.4
void kb_hactiv_arrows(unsigned char key_code) 4.1.4
void kb_hactiv_consol(unsigned char key_code) 4.1.4
void kb_hactiv_functn(unsigned char key_code) 4.1.4
void kb_hactiv_onkeys(unsigned char key_code) 4.1.4
void kb_hactiv_sfnctn(unsigned char key_code) 4.1.4
void rf_event(void)... 4.1.6
void rxchcom(unsigned char chr).. 4.1.5
void second_event(void) ... 4.1.7
void shut_down_event(void) ... 4.1.1

68

APPLICATION PROGRAM EXAMPLES 5

5 APPLICATION PROGRAM EXAMPLES

5.1 APL IN WORKDEMO.001

This application allows you to acquire product codes using either the barcode reader
or keyboard and store them in a database.

Code types enabled are:
- Standard 3/9
- Interleaved 2/5
Max code length is 4 digits.

The database is structured as follows:

CODE QUANTITY DATE TIME

where:
- code is 5 characters long
- quantity is 2 characters long
- date&time is 8 characters long

The total record length is 15 characters. The maximum length of the database is
1365 records. The application uses 20475 bytes from memory bank 0; memory
banks from 8000H to FFFFH are not used.

If the code just read isn’t already in the database, it is inserted, otherwise its quantity
is incremented and the associated date and time are refreshed.

Database downloading is performed by putting the Terminal in the transceiver (using
the RS-232 interface). After transmission, the database is deleted.

The serial communication parameters are as follows:

- Interface: RS-232

- Speed: 9600 baud

- data bits: 7

- Stop bit: 1

- Parity: Even

69

DS FOR FORMULA 5

The communication frame is:

CODE QUANTITY DATE TIME CR

Some keys have a special meaning:

• Pressing the <right arrow> key (→) backlighting comes on, while the <left arrow>
key (←) turns it off again.

• Pressing the <down arrow> (↓), writes the string “Formula E2prom:
Write,Read,Erase” into the user available part of the E2PROM.

• Pressing the <up arrow> key (↑) reads the content of the user available part of
the E2PROM and displayes it on the Terminal screen.

• Pressing the ESC key erases the user available part of the E2PROM.

For F630 terminals the following keys are emulated:

– <left arrow> (←) and <right arrow> (→) keys are mapped over the <up
arrow> (↑) and <down arrow> (↓) keys. The SCAN key selects which pair of
keys is enabled.

– ESC is obtained pressing <up arrow> and <down arrow> keys at the
same time.

Note the use of a task, which concurs with the main task, for displaying the time.

In this application the HDLCOM00.LIB communication module has been used.

70

APPLICATION PROGRAM EXAMPLES 5

5.2 APL IN WORKDEMO.002

This example, uses the VDISK library to demonstrate memory management using
files.

The application allows you to acquire a code from the barcode reader.

The enabled codes are:
- Standard 3/9
- Interleaved 2/5
- Industrial 2/5
- Matrix 2/5
- Codabar (NW7) Monarch (2/7)
- Code 93
- Code 128
- UPC/EAN

The code can be up to 12 digits long.

The read codes will be stored, with the date and time of reading, in a database
containing:

- max. no. of records: 2000

- no. of fields: 3
 DATE field of 8 characters (dd | mm | yy)
 TIME field of 8 characters (hh | mm | ss)
 CODE field of 12 characters

Maximum occupied memory: 56000 characters.

Database downloading is performed by putting the Terminal in the transceiver (using
the RS-232 interface). After transmission, the database is deleted.

The communication parameters are:

- Interface: RS-232

- Speed: 9600 baud

- data bits: 7

- Stop bit: 1

- Parity: Even

71

DS FOR FORMULA 5

The communication frame is:

CODEDATE TIME CR

Some keys have a special meaning:

• You can enter into inspection mode and display the stored data scrolling through
the database records by pressing either the <up arrow> key (↑) or the <down
arrow> key (↓).

• The <left arrow> key (←) and <right arrow> key (→) permit scrolling through a
single data record.

• Pressing ESC exits inspection mode.

For F630 terminals the following keys are emulated:

– <left arrow> (←) and <right arrow> (→) keys are mapped over the <up
arrow> (↑) and <down arrow> (↓) keys. The SCAN key selects which pair of
keys is enabled.

– ESC is obtained pressing <up arrow> and <down arrow> keys at the
same time.

To better understand the example, you can think of a matrix whose rows have the
stored records and whose columns have three fields (Date, Time, Code).

CODEDATE TIME

015910

015911

015912

...

11/09/2001

22/10/2001

22/10/2001

...

10:15

11:22

11:25

...

Record n. 0001

Record n. 0002

Record n. 0003

Note the use of a task, which concurs with the main task, for displaying the time.

To compile, the library VDISK.LIB is added in the LINK.CMD file. The communication
module HDLCOM10.LIB has been used.

72

APPLICATION PROGRAM EXAMPLES 5

5.3 APL IN WORKDEMO.003

This example demonstrates the use of module HDLCOM20, which allows you to
manage serial communication.

Moreover, it shows database storage spanning across 4 RAM banks using the
bankset() function instead of the VDISK library.

The application allows you to acquire codes and quantities. The codes can be
introduced through the barcode reader or keyboard. For the quantity value, by
pressing ENTER before any numeric key value, the quantity automatically assumes
the value 1.

The enabled codes are:
- Standard 3/9
- Interleaved 2/5
- Industrial 2/5
- MSI
- Codabar (NW7) Monarch (2/7)
- Code 128
- UPC/EAN

Code length can reach 32 digits.

The record structure is:

CODE QUANTITY DATE TIME

where:
- code is 33 characters long
- quantity is 9 characters long
- date & time is 8 characters long.

The total record length is 50 characters. The maximum length of the database is
2620 records.

The first 4 banks of RAM are used (from address 8000H to address FFEDH).

73

DS FOR FORMULA 5

Some keys have a special meaning:

• <up> and <down arrow> permit to enter the inspection mode or to scroll the
database through the records.

• <left> and <right arrow> permit to scroll the single record data.

• If in inspection mode, pressing F1 and confirming with ENTER the current record
is deleted.

• Pressing ESC the record deletion is aborted or the inspection mode is exited.

For F630 terminals the following keys are emulated:

− <left arrow> (←) and <right arrow> (→) keys are mapped over the <up arrow>
(↑) and <down arrow> (↓) keys. The SCAN key selects which pair of keys is
enabled.

− ESC is obtained pressing <up arrow> and <down arrow> keys at the same time.

− F1 is emulated by pressing the SCAN key for 1.5 seconds (in scrolling mode)

− ENTER is emulated by the SCAN key (in acquisition mode)

To better understand the example, you can think of a matrix whose rows have the
stored records and whose columns have the fields (Code, Quantity).

CODE

015910

015911

015912

...

DATE TIME

11/09/2001

22/10/2001

22/10/2001

...

10:15

11:22

11:25

...

Record n. 0001

Record n. 0002

Record n. 0003

QUANTITY

254

31

11

...

The serial communication parameters are the following:

- Interface: RS-485

- Speed: 19200 baud

- Data bits: 7

- Stop bit: 1

- Parity: Even

74

APPLICATION PROGRAM EXAMPLES 5

To use the RS-232 interface, simply remove the beam() function in APL.C and
recompile.

The protocol used is an ACK/NAK type with Mod 256 checksum; see later in this
paragraph.
The communication frame is the following:

START OF
BLOCK

STATION
ADDRESS

TEXT END OF
TEXT

CHECKSUM END OF
BLOCK

1 byte 1 byte 249 bytes max. 1 byte 2 bytes 1 byte

- Start of block: 1 character

- Station Address: 1 character

- Text or Command: 249 characters Max

- End of Text: 1 character

- Checksum: 2 characters (the two nibbles of the checksum MOD256)

- End of Block: 1 character

In the PREPARE_COMMUNICATION step you will find the initializations of the
control characters, and in particular:

start_of_block=0x02; (*STX*)

end_of_text=0x03; (*ETX*)

end_of_block=0x0D; (*CR*)

When it is put into the cradle, the Terminal prepares itself with the communication
parameters described above and awaits the commands from the host.
The following commands have been enabled:

- Directory dump

- Dump of all the data files

- Cancellation of all the data files

- Clock programming

- Request for date and time

- Enquiry

- Information on the Terminal

75

DS FOR FORMULA 5

For a full and immediate use of the example application, you can use the SysTools
and SmallNet programs for data dumping.

For a further description of the application, see paragraph 4.1.5 “Serial
Communication Handler Functions".

The figure below shows the logic with which the ACK/NACK protocol is used. On
analyzing the program’s serial management, the tkapl() task is always kept
‘sleeping’ and is only ‘awakened’ when communication takes place, i.e. when it
receives a frame or an acknowledged character (ACK or NAK).

INSERTION EVENT

SERIAL INITIALIZATION

TX ACK

RX ACK

receive ACK
char.

ACK char.

receive correct frame

receive correct frame transmit NAK char.

TX NAK

RX NAK NAK char.

transmit last frame

send acknowledge command
interpreter active answer process

receive NAK char.

end answer

transmit next
answer frame

76

APPLICATION PROGRAM EXAMPLES 5

In the figure below you can see that the TX_NAK, RX_NAK, TX_ACK and RX_ACK
states are only achieved by using a command. This shows that transmission and
reception are independent of the main task.

The technique used to obtain this result is the following: insert only a few characters
into the transmission buffer and start the transmission, entering only one character
into the UART buffer; load the rest of the characters into the buffer during the
transmission.

One character is sent in less than 500 µs at 19200 baud, thus there is more than
enough time left to load the remaining characters in concurrent mode. This mode is
also used during reception. In the reception interrupt routine a check is performed on
the received character, the checksum calculation is performed and the main task
activated all within the timespace between the reception of one character and the
next.

0

2 1 3

4 5

TX NAK
TX ACK

TX ANSWER

WAIT
COMMAND

WAIT
COMMAND

TX LAST
FRAME

CKSM
NOT OK

COMMAND
RECEIVED

RX NAK

END OF TRANSMISSION

RX ACK

COMMAND
RECEIVED

CKSM OK

RX
NAK

WAIT COMMAND

RX
ACK

77

DS FOR FORMULA 5

The figure below shows the functioning of the interrupt routine.

0

3

1

4

2

5

NO START OF BLOCK CHARACTER

COMMAND DATA

END OF TEXT

END OF BLOCK

CHECKSUM
HIGH DIGIT

STATION ADDRESS

START OF BLOCK
CHARACTER

CHECKSUM
LOW DIGIT

NO STATION
ADDRESS

MAX RX
BUFFER

78

APPLICATION PROGRAM EXAMPLES 5

5.4 APL IN WORKDEMO.004

This example shows communication with the RF interface for RF/SAT based
systems.

Codes can be inserted through the barcode reader, quantities through the keyboard.
The application allows the acquisition of the following barcode types:

- Standard 3/9

- Interleaved 2/5

- Code 128

- UPC/EAN

Code lengths can vary from a minimum of 1 to a maximum of 20 digits.

You can use the keyboard to enter a maximum of 4 digits.

The record structure is:

CODE QUANTITY DATE TIME

where:
- code is 21 characters long
- quantity is 5 characters long
- date is 8 characters long
- time is 8 characters long

The total record length is 44 characters. The maximum length of the database is 545
records.

The application uses 23980 characters of RAM bank 0.
RAM banks from address 8000H to address FFFFH aren’t used.

If no quantity is entered when prompted, and you press ENTER a default quantity is
entered equal to 1. As soon as you have done this (pressed ENTER), the data are
sent on the RF interface.

The RF communication parameters are automatically set by the handler and cannot
be modified by the user.

Should communication with the RF interface not succeed, by putting the tranceiver in
the Terminal the data will immediately be sent using the RS-232 interface. In this
case, after transmission, the database is deleted.

79

DS FOR FORMULA 5

When transmitting through the transceiver, the communications parameters are:

- Interface: RS-232

- Speed: 9600 baud

- data bits: 7

- Stop bit: 1

- Parity: Even

When transmitting through the transceiver, the communication frame is:

CODE QUANTITY DATE TIME CR

Pressing F1 the user enters a menu that allows station address setting; pressing
ESC exits the menu.

Note the use of a task, which concurs with the main task, for displaying the time.

In this application the HDLCOM00.LIB communication module has been used.

80

APPLICATION PROGRAM EXAMPLES 5

5.5 APL IN WORKDEMO.005

This example shows communication with the RF interface for STARGATE™ based
systems (HDLRF.LIB library).

The application allows acquisition of the following barcode types:

- Standard 3/9

- Interleaved 2/5

- Code 128

- UPC/EAN

The codes can be inserted through barcode reader or through keyboard; code length
can range from 1 to 32 digits.

The codes are sent immediately after acquisition to the host PC through the
STARGATE™ RF base station. The host PC should be equipped with an application
program capable of communicating with the base stations, like one of those delivered
with the Star-Link™ software.

At start-up, by pressing the <right arrow> (→) key, a menu is presented to the user to
allow parameter configuration.

The first parameter to set is the Terminal address. Be sure to choose a value not
used by other Terminals.

The next two parameters allow setting the STARGATE™ address range with which
the transaction will be carried out. If only one base station is involved, set the First
and Last STARGATE™ addresses to the same value.

The last parameter to be set is the maximum number of active devices (Terminals)
that can communicate simultaneously in the same radio space.

As an example, let us suppose this application program is run on two different
Terminals, working together in a radio system equipped with three STARGATE™ RF
base stations.

81

DS FOR FORMULA 5

A possible configuration for the two Terminals could be the following:

First Terminal
Addr. : 1
F.Sta. : 1
L.Sta. : 3
Act.Dev. : 2

Second Terminal
Addr. : 2
F.Sta. : 1
L.Sta. : 3
Act.Dev. : 2

As you can see in the source file APL.C, the task tkuserapl1() is dedicated to
managing the radio transactions and is executed while tkapl() is sleeping.

The task tkuserapl1() is organized into 3 states: one to request transaction start,
one to wait for transaction termination, and one to handle re-transmissions. After the
transaction starting request, tkuserapl1() is put to sleep until the event function
rf_event() is called by the communication handler. This event function is used to
wake up tkuserapl1() so that the task can check the transaction status. When the
transaction is terminated, control is returned to tkapl().

Re-transmission is performed after a maximum of three consecutive transaction
timeouts. If this limit is exceeded, the current session is closed.

Some keys have a special meaning:

• Pressing <right arrow> key (→) at start-up or after the current session has
been closed (see ESC below), the configuration can be set, as already
described.

• Pressing F1 only One Way transactions are allowed.
• Pressing F2 only Two Way transactions are allowed. In this case the

application checks if a response is received and displays it for a limited
amount of time.

• Pressing <up arrow> key (↑) and <down arrow> key (↓) permits LCD
contrast regulation.

• Pressing <left arrow> key (←) the backlight toggles on and off.
• Pressing F4 a message is printed containing the compilation date and the

protocol version.
• Pressing ESC the current session is closed and the initial message is again

displayed.

82

DS for Formula

Development System Manual

©2001-2007 Datalogic Mobile S.r.l. 822000131 (Rev. A) 08/07

www.mobile.datalogic.com

Datalogic Mobile S.r.l.
Via S. Vitalino, 13
40012 Lippo di Calderara di Reno
Bologna - Italy
Telephone: (+39) 051-3147011
Fax: (+39) 051-3147561

World wide Sales Network
available from: www.mobile.datalogic.com/contacts

Volume 2

	CONTENTS
	GENERAL INFORMATION
	SCOPE OF THE MANUAL
	DESCRIPTION OF THE DEVELOPMENT SYSTEM
	HOW THIS MANUAL IS ORGANIZED

	INSTALLATION AND STRUCTURE
	INSTALLING DS FOR FORMULA
	INSTALLING THE KEIL C51 COMPILER AND BL51 LINKER
	DEVELOPMENT SYSTEM STRUCTURE
	Defining O.S. Environment Variables (Sysfiles.UPG)
	Tools
	EasySend™
	DS Libraries and Customized KEIL Modules
	Include and Header Files
	F734, F732, F725, F660, F630 Folders

	DEVELOPING USER APPLICATION PROGRAMS
	SYSTEM STRUCTURE
	Multitasking Operating System
	Application Level
	Handler Level
	Driver Level

	THE APPLICATION PROGRAM AS A STATE-DIVIDED TASK
	START WITH AN EXAMPLE PROGRAM
	Modifying Makefile
	Modifying Link.cmd

	EXTENDED MEMORY APPLICATIONS
	Special Extended Memory Application Issues

	USING RAM DATA
	TERMINAL AUTONOMY
	STATE RESUMPTION AFTER SHUT-DOWN
	DISPLAY FONTS

	TERMINAL RESOURCE MANAGEMENT
	RESOURCE MANAGEMENT TOOLS
	Terminal Status Control
	Software Timers
	Decoder Handler Functions
	Keyboard Handler Functions
	Serial Communication Handler Functions
	Radio Frequency Communication Handler Functions
	E2PROM Functions
	Clock Handler Functions
	RAM Functions

	SUMMARY OF EVENT FUNCTIONS

	APPLICATION PROGRAM EXAMPLES
	APL IN WORKDEMO.001
	APL IN WORKDEMO.002
	APL IN WORKDEMO.003
	APL IN WORKDEMO.004
	APL IN WORKDEMO.005

